MHB Is the Axiom of Choice Necessary to Well-Order Finite Sets?

  • Thread starter Thread starter Csharp
  • Start date Start date
  • Tags Tags
    Finite Sets
Click For Summary
The discussion focuses on demonstrating that every finite set can be well-ordered without the need for the Axiom of Choice. The approach suggested involves using induction on the cardinality of the set, starting with a well-ordered set of size k and extending it to k+1. An ordering is defined for k+1 that incorporates the ordering from k, ensuring that the additional element is greater than all elements in k. It is established that any nonempty subset of k+1 has a lowest member, confirming the well-ordering property. The conclusion emphasizes that every total order on a finite set qualifies as a well-ordering.
Csharp
Messages
2
Reaction score
0
Hi,

I want to show that there exists a well ordering for every finite set.

(I know if you add axiom of choice you can prove this theorem for infinite sets too but I think the finite sets do not need axiom of choice to become well ordered)
 
Physics news on Phys.org
Have you tried using induction on the cardinality of the set?
 
Good idea.

Suppose that k is well ordered.

k+1= k U {k}

First of all I'll define an ordering on k+1.
If s and t are both in k then I use the ordering from k.
If one of s and t is k then k>s.

Suppose that S is a nonempty subset of k+1.
Then if it doesn't contain k it has a lowest member.
If it contains k then S-{k} has a lowest member which is also lower than k itself.
 
Csharp said:
I want to show that there exists a well ordering for every finite set.
Every total order on a finite set is a well-ordering.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K