MHB Is the Axiom of Choice Necessary to Well-Order Finite Sets?

  • Thread starter Thread starter Csharp
  • Start date Start date
  • Tags Tags
    Finite Sets
Csharp
Messages
2
Reaction score
0
Hi,

I want to show that there exists a well ordering for every finite set.

(I know if you add axiom of choice you can prove this theorem for infinite sets too but I think the finite sets do not need axiom of choice to become well ordered)
 
Physics news on Phys.org
Have you tried using induction on the cardinality of the set?
 
Good idea.

Suppose that k is well ordered.

k+1= k U {k}

First of all I'll define an ordering on k+1.
If s and t are both in k then I use the ordering from k.
If one of s and t is k then k>s.

Suppose that S is a nonempty subset of k+1.
Then if it doesn't contain k it has a lowest member.
If it contains k then S-{k} has a lowest member which is also lower than k itself.
 
Csharp said:
I want to show that there exists a well ordering for every finite set.
Every total order on a finite set is a well-ordering.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
7
Views
2K
Replies
3
Views
2K
Replies
10
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Back
Top