MHB Is the Definition of Absolute Value Always True?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Absolute
Click For Summary
The definition of absolute value states that |x| equals x when x is greater than or equal to 0, and |x| equals -x when x is less than 0. This allows for rewriting expressions without absolute values, such as |x - 3|. When x is less than 3, |x - 3| can be expressed as 3 - x, confirming that |2 - 3| equals 1, which is consistent with this definition. Conversely, for x greater than or equal to 3, |x - 3| simplifies to x - 3. The absolute value definition holds true across these scenarios.
mathdad
Messages
1,280
Reaction score
0
The definition of absolute value states the following:

| x | = x when x is > or = 0

| x | = -x when x < 0

I can use the above definition to rewrite expressions that do not contain absolute values.

| x - 3 |, where x < 3

If x < 3, then we can say that (x - 3) is less than 0.

So, -(x - 3) = -x + 3 = (3 - x).

Correct?
 
Mathematics news on Phys.org
Yes, for x< 3, |x- 3|= 3- x. For example, if x= 2, |2- 3|= |-1|= 1= 3- 2.

And, of course, if [math]x\ge 3[/math], |x- 3|= x- 3.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K