I Is the Expanded Collatz Sequence Unique for Each k Value?

  • I
  • Thread starter Thread starter elcaro
  • Start date Start date
  • Tags Tags
    Sequence
elcaro
Messages
129
Reaction score
30
TL;DR Summary
Expanding the Collatz sequence by replacing 3n+1 with 3n+2k+1 for k=0,1,2,...
For k=0 we get the original sequence, leading to the cycle 4-2-1. If the Collatz conjecture holds, that would be true for all integer values of n>0.
For values of k>0 we get different cycles.
For k=1 we for instance get the cycle 3-12-6-3
What we want to investigate is:
- What cycle is the sequence iterating to for different values of k?
- Is that cycle unique for k (independent of the seed number)?
Has this expanded Collatz sequence been explored previously?
 
Mathematics news on Phys.org
fresh_42 said:
I haven't seen this one. But even Wikipedia lists so many generalizations
https://it.wikipedia.org/wiki/Congettura_di_Collatz
https://de.wikipedia.org/wiki/Collatz-Problem
https://en.wikipedia.org/wiki/Collatz_conjecture
that yours might have been among them. Compare especially the Syracuse function.

I am with Erdös:
I think my expanded form of the Collatz sequence is already covered as a special case of the natural generalization of the Collatz sequence, explored by Conway.
 
elcaro said:
TL;DR Summary: Expanding the Collatz sequence by replacing 3n+1 with 3n+2k+1 for k=0,1,2,...
For k=0 we get the original sequence, leading to the cycle 4-2-1. If the Collatz conjecture holds, that would be true for all integer values of n>0.
For values of k>0 we get different cycles.
For k=1 we for instance get the cycle 3-12-6-3
What we want to investigate is:
- What cycle is the sequence iterating to for different values of k?
- Is that cycle unique for k (independent of the seed number)?

Has this expanded Collatz sequence been explored previously?
If you want to have more information about the cycle(s) of Collatz, watch this short video on Youtube:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top