A Is the Higgs really not as heavy as we thought?

  • A
  • Thread starter Thread starter fresh_42
  • Start date Start date
  • Tags Tags
    Higgs
fresh_42
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
2024 Award
Messages
20,627
Reaction score
27,779
TL;DR Summary
Some new considerations of multiverse scenarios during BB.
I am not quite sure whether this is scientifically as interesting as it reads, but I think it is worth a closer look.Raffaele Tito D’Agnolo and Daniele Teresi

Abstract: We present a novel framework to solve simultaneously the electroweak-hierarchy problem and the strong CP problem. A small but finite Higgs vacuum expectation value and a small θ angle are selected after the QCD phase transition, without relying on the Peccei-Quinn mechanism or other traditional solutions. We predict a distinctive pattern of correlated signals at hadronic EDM, fuzzy dark matter, and axion experiments.

Sliding Naturalness: New Solution to the Strong-CP and Electroweak-Hierarchy Problems

medium.png
 
Physics news on Phys.org
Why Higgs isn't lighter?

Isn't it on a diet? :->
 
  • Haha
Likes Hamiltonian
I'm personally of the opinion that "naturalness" is a meaningless concept that doesn't deserve serious scientific consideration and doesn't lead to useful insights (including the "electroweak-hierarchy problem" and "the strong CP problem" which are variations on that theme).

Nature is the way that Nature is and what exists in natural in the non-technical sense.

The presumption that Nature should be otherwise and could possibly be "unnatural" or require more explanation is misguided.
 
Last edited:
  • Like
Likes malawi_glenn
Maybe the universe appears to arise by design because that’s the way it was designed to appear.
 
Quarker said:
Maybe the universe appears to arise by design because that’s the way it was designed to appear.
The Tautological argument... doesn't seem to be very explanatory.
Though logically legitimate.
 
Section 4 of "Evaluation and Utility of Wilsonian Naturalness" by James D. Wells

https://arxiv.org/abs/2107.06082

argues that there isn't a problem with the mass of the Higgs.

"The summary of this section is that the SM has low fine tunings across matchings of EFTs across its mass thresholds and therefore passes its Naturalness test. There are dozens of non-trivial tests that could have come to a different conclusion. This gives confidence that our primary theory at the present (the SM) does not register as a failure in the Naturalness evaluation with which we plan to asses conjectured theories. This is in contrast to illogically charging the SM with a lethal naturalness problem and then finding new theories that do not. The SM is Natural. Or differently said, the SM does not suffer from Unnaturalness."
 
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top