Is the potential energy always negative in the ground state of a hydrogen atom?

Click For Summary
SUMMARY

The discussion centers on the negative energy of the electron in the ground state of a hydrogen atom, specifically the value of -13.6 eV. This negative energy arises from the convention that potential energy (PE) is zero at an infinite distance from the proton. As the electron moves from an unbound state to the ground state, it releases 13.6 eV of energy, indicating that the ground state energy is lower than the unbound state. The conversation also touches on the conditions for bound states in various potential wells, emphasizing that not all potentials guarantee bound states.

PREREQUISITES
  • Quantum mechanics fundamentals
  • Understanding of potential energy functions
  • Knowledge of bound states and energy eigenvalues
  • Familiarity with the hydrogen atom model
NEXT STEPS
  • Study the concept of potential wells in quantum mechanics
  • Learn about the Schrödinger equation and its applications
  • Explore the conditions for bound states in higher-dimensional potentials
  • Investigate the implications of negative potential energy in quantum systems
USEFUL FOR

Students and professionals in physics, particularly those focusing on quantum mechanics, atomic physics, and anyone interested in the behavior of electrons in potential wells.

LagrangeEuler
Messages
711
Reaction score
22
Why energy of the electron in ground state of hydrogen atom is negative ##E_1=-13,6 \rm{eV}##? I am confused because energy is sum of kinetic and potential energy. Kinetic energy is always positive. How do you know that potential energy is negative in this problem?
 
Physics news on Phys.org
LagrangeEuler said:
Why energy of the electron in ground state of hydrogen atom is negative ##E_1=-13,6 \rm{eV}##? I am confused because energy is sum of kinetic and potential energy. Kinetic energy is always positive. How do you know that potential energy is negative in this problem?
That value assumes the standard convention that the PE at infinity is zero. In any case, the point at which energy is zero is arbitrary.
 
  • Like
Likes   Reactions: vanhees71
LagrangeEuler said:
Why energy of the electron in ground state of hydrogen atom is negative ##E_1=-13,6 \rm{eV}##? I am confused because energy is sum of kinetic and potential energy. Kinetic energy is always positive. How do you know that potential energy is negative in this problem?
As @PeroK said, this refers to the convention that the energy is 0 when the electron is far from the proton. When the electron starts far away (unbound) and then goes to the ground state it releases 13.6 eV of energy. Conversely, if the electron starts in the ground state and then is pulled far away from the proton it requires 13.6 eV of energy. This indicates that the energy of the ground state is 13.6 eV lower than the energy of the unbound state. So if the latter is by convention set to 0 then the former must be -13.6 eV
 
  • Like
Likes   Reactions: dextercioby, odietrich and vanhees71
<edited>
 
Last edited:
hilbert2 said:
And, any potential well with ##V(\mathbf{r})<0##, no matter how shallow, will have at least one bound state with a negative energy eigenvalue.
Really?
 
DrClaude said:
Really?

If you create potential energy functions like

##V(x)=-C\exp\left(-kx^2 \right)##

or

##V(x,y)=-C\exp\left(-k_x x^2 - k_y y^2 \right)##

with ##C>0##, ##k_x >0## and ##k_y >0##, which have a negative value for any ##x## or ##(x,y)##, they should have a negative-energy bound state no matter how small ##C## is. Isn't this what is meant in the linked article?

https://www.researchgate.net/publication/253032187_Criteria_for_bound-state_solutions_in_quantum_mechanics
 
hilbert2 said:
If you create potential energy functions like

##V(x)=-C\exp\left(-kx^2 \right)##

or

##V(x,y)=-C\exp\left(-k_x x^2 - k_y y^2 \right)##

with ##C>0##, ##k_x >0## and ##k_y >0##, which have a negative value for any ##x## or ##(x,y)##, they should have a negative-energy bound state no matter how small ##C## is. Isn't this what is meant in the linked article?

https://www.researchgate.net/publication/253032187_Criteria_for_bound-state_solutions_in_quantum_mechanics
I haven't checked the article, but the statement above is markedly different from the one you made in post #4:
hilbert2 said:
And, any potential well with ##V(\mathbf{r})<0##, no matter how shallow, will have at least one bound state with a negative energy eigenvalue.
There are plenty of potentials well shapes for which there is a minimum depth below which there is no bound state.
 
Then, I should have stated it as

##V(\mathbf{r}) < 0## for all ##\mathbf{r}=(x_1 ,x_2 ,\dots ,x_n ) \in \mathbb{R}^n##

Or maybe you mean a potential that has the kind of negative infinity somewhere that causes a "falling to center" problem?
 
Last edited:
hilbert2 said:
Then, I should have stated it as

##V(\mathbf{r}) < 0## for all ##\mathbf{r}=(x_1 ,x_2 ,\dots ,x_n ) \in \mathbb{R}^n##

Or maybe you mean a potential that has the kind of negative infinity somewhere that causes a "falling to center" problem?
I don't see what you are getting at. While one-dimensional attractive potentials always have at least one bound state, this is not true in higher dimensions. For instance, one can show that the spherical well
$$
V(r) = \left\{ \begin{array}{ll} -V_0 & r < a \\ 0 & r>a \end{array} \right.
$$
has no bound states for ##V_0 a^2 < \pi^2 \hbar􏰠^2/8m##.
 
  • #10
DrClaude said:
I don't see what you are getting at. While one-dimensional attractive potentials always have at least one bound state, this is not true in higher dimensions. For instance, one can show that the spherical well
$$
V(r) = \left\{ \begin{array}{ll} -V_0 & r < a \\ 0 & r>a \end{array} \right.
$$
has no bound states for ##V_0 a^2 < \pi^2 \hbar􏰠^2/8m##.

Can you give a reference where this is proved? Sorry for causing confusion if I gave incorrect information.

Edit: Ok, it was as easy to find as this: https://quantummechanics.ucsd.edu/ph130a/130_notes/node227.html
 
  • Like
Likes   Reactions: DrClaude
  • #11
DrClaude said:
Really?
I don't remember by heart now, how it is in 3 dimensions. I think, there's an answer in the textbook by Messiah, but I don't have the book at hand now either :-(.
 
  • #12
vanhees71 said:
I don't remember by heart now, how it is in 3 dimensions. I think, there's an answer in the textbook by Messiah, but I don't have the book at hand now either :-(.

Some old edition of that book is readable in Archive.org

https://archive.org/details/QuantumMechanicsVolumeI/mode/2up

https://archive.org/details/QuantumMechanicsVolumeIi/mode/2up
 
  • Like
Likes   Reactions: vanhees71
  • #13
So, I guess that an n-dimensional hypercube potential well, with ##V(x_1 ,\dots ,x_n )=V_0## when any of ##|x_k |## is greater than ##L/2## and otherwise ##V (x_1 ,\dots ,x_n )=0##, always has a bound state no matter how close to zero the positive number ##V_0## is. This is because the 3D eigenfunctions are just products of the solutions of the equivalent 1-dimensional problem.

A fun problem to consider would be to make a finite potential well where the region with ##V(x_1 ,\dots ,x_n ) = 0## is a hypercube with rounded corners, i.e. an intersection of a hypercube with side length ##L## and a sphere with radius ##L/2 \leq R \leq \sqrt{n}L/2##.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
5K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 47 ·
2
Replies
47
Views
5K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K