Undergrad Is the Quotient of a Banach Space by a Closed Linear Subspace also Banach?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

The quotient of a Banach space \(X\) by a closed linear subspace \(M\) is indeed a Banach space when equipped with the norm \(\|x + M\| := \inf\{\|x + y\|_X : y\in M\}\). This conclusion is established through the properties of complete normed spaces and the definition of the quotient norm. The proof demonstrates that every Cauchy sequence in the quotient space converges, thereby confirming its completeness.

PREREQUISITES
  • Understanding of Banach spaces and their properties
  • Familiarity with closed linear subspaces
  • Knowledge of quotient spaces in functional analysis
  • Proficiency in normed vector spaces and Cauchy sequences
NEXT STEPS
  • Study the properties of closed linear subspaces in Banach spaces
  • Learn about the construction and properties of quotient spaces in functional analysis
  • Explore the concept of completeness in normed spaces
  • Investigate examples of Banach spaces and their quotients
USEFUL FOR

Mathematicians, particularly those specializing in functional analysis, graduate students studying advanced mathematics, and researchers exploring properties of Banach spaces and linear algebra.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Prove that the quotient of a Banach space $X$ by a closed linear subspace $M$ is Banach with respect to the norm $$\|x + M\| := \inf\{\|x + y\|_X : y\in M\}\quad (x\in X)$$

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to Opalg for his correct solution, which you can read below:
The wording of the question implies that the given function $\|x+M\|$ is a norm on the quotient space, and we just have to show that it makes the quotient space complete.

Let $\{x_n+M\}_{n\in\Bbb{N}}$ be a Cauchy sequence in $X/M$. There exists an increasing sequence $\{n_k\}_{k\in\Bbb{N}}$ such that $\|x_m - x_n+M\| = \|(x_m+M) - (x_n+M)\| <2^{-k}$ whenever $m,n \geqslant n_k$.

The next step is to construct a sequence $\{y_k\}$ with $y_k\in x_{n_k}+M$ such that $\|y_k - y_{k+1}\| < 2^{-k}$. Let $y_1 = x_{n_1}$. Then $$\| x_{n_1} - x_{n_2} + M\| = \inf_{z\in M} \{ x_{n_1} - (x_{n_2}+z)\| <2^{-1}.$$ If $y_2 = x_{n_2} +z$, where $z$ is sufficiently close to achieving that infimum, then $y_2\in x_{n_2} + M$ and $\|y_1-y_2\| < 2^{-1}$.

The inductive construction for the rest of the sequence is essentially the same. If $y_k \in x_{n_k}$, then $$\| x_{n_k} - x_{n_{k+1}} + M\| = \inf_{z\in M} \{ y_k - (x_{n_2}+z)\| <2^{-k},$$ and we can choose $y_{k+1} = x_{n_2}+z$ so that $\|y_k - y_{k+1}\| < 2^{-k}.$

The sequence $\{y_k\}$ is Cauchy in $X$, because if $l>k$ then $$\|y_k - y_l\| \leqslant \|y_k - y_{k+1}\| + \|y_{k+1} - y_{k+2}\| + \ldots + \|y_{l-1} - y_l\| < 2^{-k} + 2^{-(k+1)} + \ldots + 2^{-(l-1)} < \sum_{r=k}^\infty 2^{-r} = 2^{-(k-1)}.$$ Since $X$ is complete, it follows that $\{y_k\}$ converges to a limit $x$. Therefore $\|(x_{n_k}+M) -( x + M)\| \leqslant \|y_k - x\| \to0$ as $k\to\infty$. But if a subsequence of a Cauchy sequence converges, then the whole sequence converges (to the same limit). Therefore $\{x_n+M\}$ converges to $x+M$, which shows that $X/M$ is complete.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K