Is the Quotient Topology of Real Numbers Homeomorphic to Real Numbers?

Click For Summary

Discussion Overview

The discussion revolves around the quotient topology of the real numbers, specifically examining two exercises related to partitioning the space of real numbers, ##\mathbb{R}##. The first exercise involves partitioning ##\mathbb{R}## into the interval ##[a,b]## and singletons, while the second exercise considers the open interval ##(a,b)##. Participants explore whether the resulting quotient spaces are homeomorphic to ##\mathbb{R}##.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests that the canonical projection from ##\mathbb{R}## to the quotient space ##\mathbb{R}/\sim## can be used to construct a bijective map that demonstrates homeomorphism for the first exercise.
  • Another participant introduces the universal property of quotients as a method to argue that a continuous map from ##\mathbb{R}## to ##\mathbb{R}## satisfies the necessary conditions for homeomorphism.
  • Concerns are raised about the continuity of the proposed maps, with emphasis on the need to show that both the map and its inverse are continuous.
  • For the second exercise, participants discuss the challenges of proving that ##\mathbb{R}/\sim## is not homeomorphic to ##\mathbb{R}##, suggesting that the nature of open sets in the quotient topology may provide insight.
  • One participant notes that the singleton corresponding to the open interval ##(a,b)## is open, which contrasts with the properties of points in ##\mathbb{R}##.
  • Another participant proposes investigating the point ##\bar{x}:=\{a\}## in the context of open neighborhoods to further explore the non-homeomorphic nature of the second exercise.

Areas of Agreement / Disagreement

Participants express differing views on the homeomorphic nature of the quotient spaces derived from the two exercises. There is no consensus on the second exercise, as participants explore various criteria and methods for establishing non-homeomorphism.

Contextual Notes

Participants highlight the importance of understanding the definitions of open sets in the context of quotient topology and the implications of continuity for homeomorphisms. The discussion reveals complexities in proving homeomorphism or its absence, particularly regarding the nature of neighborhoods in the quotient spaces.

Korybut
Messages
74
Reaction score
4
TL;DR
R without interval and open interval
Hello!

I have two related exercises I need help with

1. Partition the space ##\mathbb{R}## into the interval ##[a,b]##, and singletons disjoint from this interval. The associated equivalence ##\sim## is defined by ##x\sim y## if and only if either##x=y## or ##x,y\in[a,b]##. Then ##\mathbb{R}/\sim## is the space obtained from ##\mathbb{R}## by shrinking ##[a,b]## to a point. The space ##\mathbb{R}/\sim## looks like ##\mathbb{R}## show that it is homeomorphic to ##\mathbb{R}##.

2. Suppose we use the open interval ##(a,b)## in place of ##[a,b]## in the previous exercise. So, in this case ##x\sim y## if and only if either ##x=y## or ##x,y\in (a,b)##. Show that ##\mathbb{R}/\sim## is not homeomorphic to ##\mathbb{R}##.

Concerning the first exercise I have the following
Canonical projection maps initial ##\mathbb{R}## to ##\{ (-\infty,a),point,(b,+\infty)\}##. Here ##point## is the image of the interval ##[a,b]##. It is not had to provide a bijective map with the following properties
$$ f:(-\infty,a)\rightarrow (-\infty,0),\;\; f:point\rightarrow 0,\;\; f:(b,+\infty)\rightarrow (0,+\infty)$$
How to show that this map is continuous based on definition of open sets in quotient topology?

Concerning the second exercise
How to show that something is not homeomorphic? Maybe there is some sort of criterion, cause to show that one can not invent homeomorphism looks like a tough problem.
 
Physics news on Phys.org
The singleton in part 2 corresponding to ##(a,b)## is open, which is not true of any point in ##\mathbb{R}.##

For part 1 (and in general for identifying quotients), I find like to argue from the universal property of quotients: given ##X\to X/\sim## and a map ##g:X\to Y## such that ##g(x_1)=g(x_2)## whenever ##x_1\sim x_2##, there is a unique map ##(X/\sim)\to Y## making the appropriate diagram commute, and this characterizes quotients ##X\to X/\sim.##

Then you could argue that a continuous map ##\mathbb{R}\to\mathbb{R}## that is say, linear of slope ##1## away from ##[a,b]## and constant on ##[a,b]## satisfies the universal property above, so ##(\mathbb{R}/\sim)\cong\mathbb{R}.##

Your method also works and is more direct. You would take open intervals in ##\mathbb{R}## and look at their preimages in ##\mathbb{R}/\sim## and determine that they're open according to the quotient topology (which means looking at their preimages again, in ##\mathbb{R}##), but then you would also have to do the same for the inverse of your map to show that it is a homeomorphism.
 
  • Like
Likes   Reactions: Korybut
Korybut said:
Summary:: R without interval and open interval

Hello!

I have two related exercises I need help with

1. Partition the space ##\mathbb{R}## into the interval ##[a,b]##, and singletons disjoint from this interval. The associated equivalence ##\sim## is defined by ##x\sim y## if and only if either##x=y## or ##x,y\in[a,b]##. Then ##\mathbb{R}/\sim## is the space obtained from ##\mathbb{R}## by shrinking ##[a,b]## to a point. The space ##\mathbb{R}/\sim## looks like ##\mathbb{R}## show that it is homeomorphic to ##\mathbb{R}##.

2. Suppose we use the open interval ##(a,b)## in place of ##[a,b]## in the previous exercise. So, in this case ##x\sim y## if and only if either ##x=y## or ##x,y\in (a,b)##. Show that ##\mathbb{R}/\sim## is not homeomorphic to ##\mathbb{R}##.

Concerning the first exercise I have the following
Canonical projection maps initial ##\mathbb{R}## to ##\{ (-\infty,a),point,(b,+\infty)\}##. Here ##point## is the image of the interval ##[a,b]##. It is not had to provide a bijective map with the following properties
$$ f:(-\infty,a)\rightarrow (-\infty,0),\;\; f:point\rightarrow 0,\;\; f:(b,+\infty)\rightarrow ( 0,+\infty)$$
How to show that this map is continuous based on definition of open sets in quotient topology?
We have to show that ##f## and ##f^{-1}## are continuous. The open sets in ##\mathbb{R}## are unions of open intervals, the empty set and ##\mathbb{R}## itself. What are the open sets in ##\mathbb{R}/\sim##? They are all sets ##\{V\subseteq \mathbb{R}/\sim\,|\,\pi^{-1}(V)\subseteq \mathbb{R} \text{ open }\}## where ##\pi\, : \,\mathbb{R}\longrightarrow \mathbb{R}/\sim## is the projection.

In order for ##f## to be continuous, we have to show that ##f^{-1}(U)=\{y\in \mathbb{R}/\sim\,|\,f(y)\in U\}## is open in ##\mathbb{R}/\sim## whenever ##U\subseteq \mathbb{R}## is open, i.e. that ##\pi^{-1}(f^{-1}(U))\subseteq \mathbb{R}## is open. We already know that ##f## is bijective, so we know that ##\operatorname{im}(f)=\mathbb{R}## and we can assume ##U\subseteq \operatorname{im}(f).##

Since ##f^{-1}(U\cup V)=f^{-1}(U)\cup f^{-1}(V)## we only need to consider open intervals, not their unions. So let's say ##U=(c,d)\subseteq \mathbb{R}.##

... let me sort this out ... I'm typing directly without script ... you used "point" for a specific point in ##\mathbb{R}/\sim## which was a bit unlucky ...
\begin{align*}
\mathbb{R}\stackrel{\pi}{\longrightarrow } \mathbb{R}/\sim &\stackrel{f}{\longrightarrow } \mathbb{R} \stackrel{\pi}{\longrightarrow } \mathbb{R}/\sim \\
\{point\}& \longmapsto 0\\
f^{-1}(U)&\longrightarrow U \text{ open}
\end{align*}
We use the fact that ##(c,d)=U\subseteq \mathbb{R}=\operatorname{im}(f)##. The intervals in the image of ##f## are identical intervals if they lie completely left or right of ##\{0\}##. If ##0\in U## then ##f^{-1}(U)=(c',d')## for some ##c',d'\in \mathbb{R}## with ##c'<a## and ##d'>b.## Equality is excluded since ##U## is an open interval. So in any case ##f^{-1}(U)## has the form ##(c',d')\subseteq \mathbb{R}/\sim.## This means that ##\pi^{-1}(f^{-1}(U))=\pi^{-1}((c',d'))=(c',d')\subseteq \mathbb{R}## is open in ##\mathbb{R}## so ##f^{-1}(U)## is open in ##\mathbb{R}/\sim## by the definition of the quotient topology.

Note that we did not say that ##(c',d') \subseteq \mathbb{R}/\sim## are open because the boundaries are not included. We concluded that they are open because their pre-images under ##\pi## are open intervals in ##\mathbb{R}.## This is an essential difference. We showed they are open because they belong into the topology, the set of open sets, not because they "look" open.


Now you have to do the same for the function ##f^{-1}.## For it's pre-images we have ##(f^{-1}(U))^{-1}=U.##

Korybut said:
Concerning the second exercise
How to show that something is not homeomorphic? Maybe there is some sort of criterion, cause to show that one can not invent homeomorphism looks like a tough problem.

A set is open if and only if every point has an open neighborhood that is entirely contained in the set. (You can prove this by using that arbitrary unions of open sets are open.)

In case we consider ##\mathbb{R}/(a,b)## I suggest to investigate the point ##\bar{x}:=\{a\}.## Every point in ##\mathbb{R}## has an open neighborhood entirely contained in ##\mathbb{R},## of course. But does ##\bar{x}:=\{a\}## have?
 
Last edited:
  • Like
Likes   Reactions: Korybut
Korybut said:
Summary:: R without interval and open interval

Hello!

I have two related exercises I need help with

1. Partition the space ##\mathbb{R}## into the interval ##[a,b]##, and singletons disjoint from this interval. The associated equivalence ##\sim## is defined by ##x\sim y## if and only if either##x=y## or ##x,y\in[a,b]##. Then ##\mathbb{R}/\sim## is the space obtained from ##\mathbb{R}## by shrinking ##[a,b]## to a point. The space ##\mathbb{R}/\sim## looks like ##\mathbb{R}## show that it is homeomorphic to ##\mathbb{R}##.

2. Suppose we use the open interval ##(a,b)## in place of ##[a,b]## in the previous exercise. So, in this case ##x\sim y## if and only if either ##x=y## or ##x,y\in (a,b)##. Show that ##\mathbb{R}/\sim## is not homeomorphic to ##\mathbb{R}##.

Concerning the second exercise
How to show that something is not homeomorphic? Maybe there is some sort of criterion, cause to show that one can not invent homeomorphism looks like a tough problem.

A homeomorphism is necessarily a continuous injection.

A continuous injection f: \mathbb{R}/{\sim} \to \mathbb{R} must map \{ \{x\}: x \leq a\} and \{ \{x\}: x \geq b\} to disjoint unbounded closed intervals. That leaves us with an open interval of positive width into which we must place the single point f((a,b)) and then we're left with two open intervals of positive width which are not in the image of f. Since f is not a surjection it cannot be a homeomorphism.
 
  • Like
Likes   Reactions: Korybut
fresh_42 said:
A set is open if and only if every point has an open neighborhood that is entirely contained in the set. (You can prove this by using that arbitrary unions of open sets are open.)

In case we consider ##\mathbb{R}/(a,b)## I suggest to investigate the point ##\bar{x}:=\{a\}.## Every point in ##\mathbb{R}## has an open neighborhood entirely contained in ##\mathbb{R},## of course. But does ##\bar{x}:=\{a\}## have?
I believe I do not understand your exercise. I need to provide open set ##U_a\subset\mathbb{R}/\sim## which contains equivalence class of ##a##. I can take ##U_a=\pi((a-\varepsilon,a+\varepsilon))##, ##\pi^{-1}(U_a)=(a-\varepsilon,b)##. Then ##U_a## is open due to properties of canonical projection. Or I misunderstand your exercise completely?

pasmith said:
A homeomorphism is necessarily a continuous injection.

A continuous injection f: \mathbb{R}/{\sim} \to \mathbb{R} must map \{ \{x\}: x \leq a\} and \{ \{x\}: x \geq b\} to disjoint unbounded closed intervals. That leaves us with an open interval of positive width into which we must place the single point f((a,b)) and then we're left with two open intervals of positive width which are not in the image of f. Since f is not a surjection it cannot be a homeomorphism.
I do understand how contradiction emerges in this example. But I think very specific class of possible ##f##s was considered, am I right?

p.s. Please forgive me such a delayed reply.
 
I think I found rigorous way to solve second exercise. Homeomorphism should map closed sets to closed sets. Every single point in ##\mathbb{R}## is closed while ##\pi((a,b))## is open in ##\mathbb{R}/\sim## so there is no homeomorphism.
 
Korybut said:
I do understand how contradiction emerges in this example. But I think very specific class of possible ##f##s was considered, am I right?

p.s. Please forgive me such a delayed reply.

There are more general possible continuous injections, but they have no hope of being surjections. We want f to fail to be surjective for a specific reason, not because e.g. f(\mathbb{R}/{\sim}) is bounded.

But there is a better proof: If f^{-1} is continuous then f(U) must be open for every open U \subset \mathbb{R}/{\sim}. But what happens when p^{-1}(U) = (a,b)?
 
  • Like
Likes   Reactions: Korybut

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 61 ·
3
Replies
61
Views
7K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
6K
  • · Replies 15 ·
Replies
15
Views
3K