POTW Is the Rank of AB Related to the Ranks of A and B?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on the relationship between the ranks of matrices A, B, and their product AB in the context of a field F. It establishes the inequalities that define how the ranks of A and B influence the rank of their product, specifically that the rank of AB is bounded below by the sum of the ranks of A and B minus k, and above by the minimum of the ranks of A and B. The participants delve into the implications of these inequalities for linear transformations and matrix theory. The conversation emphasizes the importance of understanding matrix rank in various mathematical applications. Overall, the discussion highlights key properties of matrix ranks in linear algebra.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##F## be a field. If ##A \in M_{n\times k}(F)## and ##B\in M_{k\times n}(F)##, show that $$\operatorname{rank}(A) + \operatorname{rank}(B) - k \le \operatorname{rank}(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$$
 
Physics news on Phys.org
First some preliminaries. The column space of a matrix ##M##, denoted ##\mathcal{C} (M)##, is the span of the columns of ##M## and the row space of a matrix ##M##, denoted ##\mathcal{R} (M)##, is the span of the rows of ##M##. The column rank of a matrix ##M## is the dimension of the column space of ##M##, while the row rank of ##M## is the dimension of the row space of ##M##. It can be shown that the column rank is equal to the row rank, which is denoted ##\text{rank} (M)##. Note ##\mathcal{C} (M)## is the ##\text{range} (M)##.

For ##M \in M_{k \times n} (F)## we have by the rank-nullity theorem:

\begin{align*}
\dim \ker (M) + \dim \text{range} (M) = n .
\end{align*}

But ##\dim \text{range} (M) = \dim \mathcal{C} (M) = \text{rank} (M)##. Therefore,

\begin{align*}
\dim \ker (M) + \text{rank} (M) = n \qquad (*)
\end{align*}

We have the inequality

\begin{align*}
\dim \ker (AB) \leq \dim \ker (A) + \dim \ker (B) \qquad (**)
\end{align*}

as

\begin{align*}
\dim \ker (AB) =\dim [\ker (A) \cap \text{range} (B)] + \dim \ker (B) .
\end{align*}

Using ##(*)## in ##(**)##,

\begin{align*}
[n - \text{rank} (AB)] \leq [k - \text{rank} (A)] + [n - \text{rank} (B)]
\end{align*}

or

\begin{align*}
\text{rank} (A) + \text{rank} (B) - k \leq \text{rank} (AB)
\end{align*}

Next, the columns of ##AB## are linear combinations of columns of ##A## and are hence in its span so ##\text{rank} (AB)## is less than or equal to ##\text{rank} (A)##. The rows of ##AB## are linear combinations of rows of ##B## and are hence in its span so ##\text{rank} (AB)## is less than or equal to ##\text{rank} (B)##. Therefore,

\begin{align*}
\text{rank} (AB) \leq \min \{ \text{rank} (A) , \text{rank} (B) \} .
\end{align*}
 
Last edited:
  • Like
Likes Euge and topsquark
Supplementary

We elaborate on the proof of:

\begin{align*}
\dim \ker (AB) \leq \dim \ker (A) + \dim \ker (B) .
\end{align*}First, we have by the rank-nullity theorem:

\begin{align*}
\dim \ker (AB) = n - \dim \text{range} (AB) \qquad (*)
\end{align*}

Now, consider the linear transformation ##A_{| \text{range} (B)} : \text{range} (B) \rightarrow F^n## defined by ##A_{| \text{range} (B)} x = A x## for all ##x \in \text{range} (B) \subseteq F^k##. Note ##\text{range} (A_{| \text{range} (B)}) = \text{range} (AB)##. By the rank-nullity theorem applied to ##A_{| \text{range} (B)}##:

\begin{align*}
\dim \text{range} (AB) = \dim \text{range} (A_{| \text{range} (B)}) = \dim \text{range} (B) - \dim \ker (A_{| \text{range} (B)})
\end{align*}

Note, by the rank-nullity theorem, ##\dim \text{range} (B) = n - \dim \ker (B)##, therefore by the previous result

\begin{align*}
\dim \text{range} (AB) = n - \dim \ker (B) - \dim \ker (A_{| \text{range} (B)}) \quad (**)
\end{align*}

Using ##(**)## in ##(*)## we have

\begin{align*}
\dim \ker (AB) = \dim \ker (A_{| \text{range} (B)}) + \dim \ker (B)
\end{align*}

As ##\ker (A_{| \text{range} (B)}) = \ker (A) \cap \text{range} (B)##,

\begin{align*}
\dim \ker (AB) = \dim [\ker (A) \cap \text{range} (B)] + \dim \ker (B) .
\end{align*}

Finally, as ##\ker (A) \cap \text{range} (B) \subseteq \ker (A)##, we have ##\dim [\ker (A) \cap \text{range} (B)] \leq \dim \ker (A)##, and thus

\begin{align*}
\dim \ker (AB) \leq \dim \ker (A) + \dim \ker (B) .
\end{align*}
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K