MHB Is the Russell's Paradox Resolved in Predicate Calculus?

  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Calculus Proof
Click For Summary
The discussion centers on proving the statement $\neg\exists y\,\forall x\,(x\in y\leftrightarrow \neg x\in x)$ in predicate calculus, which relates to Russell's Paradox. Participants are encouraged to provide formal proofs demonstrating that no such set can exist where an element is a member of itself if and only if it is not a member of itself. The focus is on the implications of this statement for set theory and the resolution of the paradox. The thread emphasizes the need for rigorous formalization in predicate calculus to address the paradox effectively. Engaging with this proof is crucial for understanding foundational issues in mathematics.
solakis1
Messages
407
Reaction score
0
Prove (formall
y) in predicate calculus :

$\neg\exists y\,\forall x\,(x\in y\leftrightarrow \neg x\in x)$.
 
Mathematics news on Phys.org
solakis said:
Prove (formall
y) in predicate calculus :

$\neg\exists y\,\forall x\,(x\in y\leftrightarrow \neg x\in x)$.

Please post the solution you have ready.
 
MarkFL said:
Please post the solution you have ready.
$$\neg\exists y\forall x(x\in y\Longleftrightarrow\neg(x\in x))$$

Proof:

1) $$\exists y\forall x(x\in y\Longleftrightarrow\neg(x\in x))$$........Hypothesis for RAA

2)$$ \forall x(x\in y\Longleftrightarrow\neg(x\in x))$$.......Hypothesis for existential elimination (EE)

3)$$ y\in y\Longleftrightarrow\neg(y\in y)$$.........2,Universal elimination (UE)

4) $$ y\in y$$..............hypothesis for RAA

5) $$ y\in y\Longrightarrow\neg(y\in y)$$......... 3,elimination of double implication (<=>E)

6) $$\neg(y\in y)$$.................4,5 M.Ponens

7) $$ y\in y\wedge \neg(y\in y)$$............4,6 addition introduction (& I)

8) $$\neg(y\in y)$$...............4 to 7 RAA

9) $$\neg( y\in y)\Longrightarrow y\in y$$..........3,<=> E

10) $$ y\in y$$................ 8,9 M.Ponens

11) $$ A\wedge \neg A$$...............8,10 CONTRAD

12) $$ A\wedge \neg A$$......1,2 to 11 EE

13) $$\neg\exists y\forall x(x\in y\Longleftrightarrow\neg(x\in x))$$..........1 to 12 RAA
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
891
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K