Is the Russell's Paradox Resolved in Predicate Calculus?

  • Context: MHB 
  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Calculus Proof
Click For Summary
SUMMARY

The discussion centers on proving the statement $\neg\exists y\,\forall x\,(x\in y\leftrightarrow \neg x\in x)$ in predicate calculus, which addresses Russell's Paradox. Participants emphasize the necessity of formal proof techniques within predicate logic to demonstrate the non-existence of a set that contains all sets that do not contain themselves. The conversation highlights the importance of understanding logical quantifiers and set theory to navigate the implications of this paradox effectively.

PREREQUISITES
  • Understanding of predicate calculus and logical quantifiers
  • Familiarity with set theory concepts, particularly Russell's Paradox
  • Knowledge of formal proof techniques in mathematical logic
  • Ability to interpret logical expressions and their implications
NEXT STEPS
  • Study formal proof methods in predicate calculus
  • Explore set theory and its foundational principles
  • Investigate alternative resolutions to Russell's Paradox
  • Learn about logical frameworks that incorporate type theory
USEFUL FOR

Mathematicians, logicians, philosophy students, and anyone interested in the foundations of mathematics and the implications of set theory.

solakis1
Messages
407
Reaction score
0
Prove (formall
y) in predicate calculus :

$\neg\exists y\,\forall x\,(x\in y\leftrightarrow \neg x\in x)$.
 
Physics news on Phys.org
solakis said:
Prove (formall
y) in predicate calculus :

$\neg\exists y\,\forall x\,(x\in y\leftrightarrow \neg x\in x)$.

Please post the solution you have ready.
 
MarkFL said:
Please post the solution you have ready.
$$\neg\exists y\forall x(x\in y\Longleftrightarrow\neg(x\in x))$$

Proof:

1) $$\exists y\forall x(x\in y\Longleftrightarrow\neg(x\in x))$$........Hypothesis for RAA

2)$$ \forall x(x\in y\Longleftrightarrow\neg(x\in x))$$.......Hypothesis for existential elimination (EE)

3)$$ y\in y\Longleftrightarrow\neg(y\in y)$$.........2,Universal elimination (UE)

4) $$ y\in y$$..............hypothesis for RAA

5) $$ y\in y\Longrightarrow\neg(y\in y)$$......... 3,elimination of double implication (<=>E)

6) $$\neg(y\in y)$$.................4,5 M.Ponens

7) $$ y\in y\wedge \neg(y\in y)$$............4,6 addition introduction (& I)

8) $$\neg(y\in y)$$...............4 to 7 RAA

9) $$\neg( y\in y)\Longrightarrow y\in y$$..........3,<=> E

10) $$ y\in y$$................ 8,9 M.Ponens

11) $$ A\wedge \neg A$$...............8,10 CONTRAD

12) $$ A\wedge \neg A$$......1,2 to 11 EE

13) $$\neg\exists y\forall x(x\in y\Longleftrightarrow\neg(x\in x))$$..........1 to 12 RAA
 
Last edited by a moderator:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K