Is the Sum of Exponential Random Variables a Gamma Distribution?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on a problem involving the sum of independent and identically distributed (i.i.d.) exponential random variables, specifically demonstrating that this sum follows a Gamma distribution. The exponential random variable is defined by its probability density function, and participants are encouraged to show how the sum aligns with the Gamma distribution's characteristics. A reminder is provided that if the variables are not i.i.d., the result does not hold. The thread highlights that no correct solutions were submitted for the problem. The discussion emphasizes the relationship between exponential and Gamma distributions in probability theory.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks again to those that participated in the second round of our POTW! Now, it's time for the third one! (Bigsmile)

This week's problem was proposed by yours truly.

-----

Problem: Let $X_i,\, (i=1,\ldots,n)$ be a (continuous) random variable of the exponential distribution $\text{Exp}(\lambda)$, where it's probability density function (p.d.f.) is defined by

\[f(x) = \left\{\begin{array}{cl}\lambda e^{-\lambda x} & x\geq 0,\,\lambda >0\\ 0 & x<0\end{array}\right.\]

Show that $\sum_{i=1}^n X_i$ is equivalent to a random variable of the Gamma distribution $\Gamma(n,\theta)$, where the p.d.f. of the Gamma distribution is given by

\[f(x) = \left\{\begin{array}{cl}\frac{1}{\theta^n\Gamma(n)}x^{n-1}e^{-x/\theta} & x\geq 0,\,\theta>0,\, n\in\mathbb{Z}^+\\ 0 & x<0\end{array}\right.\]

-----

Here are two hints:

If $X$ is a continuous random variable, we define the moment generating function by

\[M_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty}e^{tx}f(x)\,dx\]

where $f(x)$ is the p.d.f. of the random variable $X$. Use the fact that if $\{X_i\}_{i=1}^n$ is a collection of random variables, then

\[M_{\sum_{i=1}^n X_i}(t) = \prod_{i=1}^n M_{X_i}(t)\]

Recall that $\Gamma(x) = \displaystyle\int_0^{\infty}e^{-t}t^{x-1}\,dx$.

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-(POTW)-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!

EDIT: I forgot to mention that each $X_i$ are i.i.d. random variables. If they're not, then the above result doesn't hold (thanks to girdav for pointing this out).
 
Last edited:
Physics news on Phys.org
Sadly, no one answered the question gave a correct solution this week!

Here's the solution to the problem.

By a simple calculation, we can show that if $X_i\sim \text{Exp}(\lambda)$, then

\[\begin{aligned}M_{X_i}(t) &= \int_0^{\infty}e^{tx}\lambda e^{-\lambda x}\,dx\\ &= \lambda\int_0^{\infty}e^{-(\lambda-t)x}\,dx\\ &= \frac{\lambda}{\lambda-t}\int_0^{\infty}e^{-u}\,du\,\quad \text{(by making the substitution $u=(\lambda-t)x$}\\ &= \frac{\lambda}{\lambda-t}=\frac{1}{1-(t/\lambda)}\end{aligned}\]

Let $X\sim\Gamma(n,\theta)$. Then

\[\begin{aligned}M_X(t) &= \frac{1}{\theta^n\Gamma(n)}\int_0^{\infty}x^{n-1}\exp\left(-\left(\frac{1}{\theta}-t\right)x\right)\,dx\\
&= \frac{1}{\theta^n\Gamma(n)} \int_0^{\infty}\frac{1}{(1/\theta - t)^n}u^{n-1}e^{-u}\,du\quad\text{(use the substitution $u=(1/\theta - t)x$}\\ &= \frac{1}{\theta^n\Gamma(n)(1/\theta- t)^n}\Gamma(n)\quad\text{(by definition of the Gamma function)}\\ &=\frac{1}{\theta^n(1/\theta - t)^n}=\frac{1}{(1-t\theta)^n}.\end{aligned}\]

Thus,

\[\begin{aligned}M_{\sum_{i=1}^n X_i}(t) &= \prod_{i=1}^n M_{X_i}(t)\\ &= \prod_{i=1}^n \frac{1}{1 - (t/\lambda)}\\ &= \frac{1}{(1-(t/\lambda))^n}\end{aligned}\]

If we make the substitution $\frac{1}{\theta}=\lambda$, then we see that

\[M_{\sum_{i=1}^n X_i}(t) = \frac{1}{(1-t\theta)^n} = M_X(t)\]

where $X\sim\Gamma(n,\theta)$.

Therefore, $X=\sum_{i=1}^n X_i.\qquad\blacksquare$
 
Last edited:

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K