Let $x = \sqrt[3]{45+29\sqrt{2}}+ \sqrt[3]{45-29\sqrt{2}}$. Then by application of binomial theorem for $n = 3$,
$\boxed{x^3} = \left ( \sqrt[3]{45+29\sqrt{2}}+ \sqrt[3]{45-29\sqrt{2}} \right )^3$
$=\left(\sqrt[3]{45+29\sqrt{2}}\right)^3+ \left(\sqrt[3]{45-29\sqrt{2}}\right)^3$ $ + 3 \left (\sqrt[3]{45+29\sqrt{2}} \right) \left(\sqrt[3]{45-29\sqrt{2}}\right) \underbrace{\left (\sqrt[3]{45+29\sqrt{2}}+ \sqrt[3]{45-29\sqrt{2}} \right )}_{=x}$
$= 45 + 29\sqrt{2} + 45 - 29\sqrt{2} + 3 \cdot \underbrace{\sqrt[3]{45^2 - 2 \cdot 29^2}}_{=7} \cdot x = \boxed{90 + 21x}$
Thus, the given expression is a root of $x^3 - 21x - 90 = 0$. By the rational root theorem, if this has a rational root, it must also be an integer. Thus looking for integer factors we find that $x^3 - 21x - 90 = (x - 6)(x^2 + 6x + 15)$. The quadratic factor has discriminant $\Delta = 6^2 - 4 \cdot 15 = -24$ and hence all of the roots complex. Thus, $6$ is the only rational (well, integer) root of the cubic, forcing
$$\sqrt[3]{45+29\sqrt{2}}+ \sqrt[3]{45-29\sqrt{2}} = 6 \;\;\; \blacksquare$$