Is the Validity of an Argument Dependent on Premise Truth?

  • Context: MHB 
  • Thread starter Thread starter solakis1
  • Start date Start date
Click For Summary

Discussion Overview

The discussion centers around the relationship between the truth of premises and the validity of arguments, particularly in the context of mathematical logic. Participants explore whether false premises can lead to true conclusions and the implications of this for the definition of a valid argument.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • Some participants claim that false premises can never produce a correct conclusion, questioning the validity of this assertion.
  • Others argue that a valid argument can have false premises and still yield a true conclusion, providing examples such as $p\land\neg p\models q\to q$.
  • A participant presents an example involving arithmetic to illustrate that false premises can imply a true conclusion, asking if this argument is valid.
  • Some participants express uncertainty about the definition of a valid argument when it involves fixed meanings of symbols, such as numbers and geographical locations.
  • There is a suggestion that providing a clear definition of a valid argument would be more beneficial than additional examples.
  • One participant notes that the argument form corresponding to their example is valid in propositional calculus, but questions remain about its application with fixed truth values.
  • Another participant asserts that the argument deriving $\neg q$ from $p\to q$ and $\neg p$ is not valid, indicating a disagreement on the validity of certain argument forms.

Areas of Agreement / Disagreement

Participants do not reach a consensus on whether false premises can lead to valid arguments or true conclusions. Multiple competing views remain regarding the definitions and implications of validity in arguments.

Contextual Notes

Participants express limitations in their understanding of valid arguments when fixed meanings are involved, indicating a dependence on definitions that are not universally agreed upon. There are unresolved questions about the application of propositional calculus in specific examples presented.

solakis1
Messages
407
Reaction score
0
it has been claimed that in an argument false premises can never produce a correct conclusion.is that correct ??
 
Physics news on Phys.org
"An argument" is not a term that is used in most textbooks of mathematical logic. What Copi calls a valid or invalid argument is a true (correspondingly, false) claim about logical (or semantic) consequence. This claim is usually denoted by $\Gamma\models A$ where $\Gamma$ is a set of formulas and $A$ is another formula.

That said, a valid argument with false premises can definitely have a true conclusion. For example, $p\land\neg p\models q\to q$ is a valid argument (form).
 
If tomorrow is Christmas then 2+ 2= 4.
 
Evgeny.Makarov said:
"An argument" is not a term that is used in most textbooks of mathematical logic. What Copi calls a valid or invalid argument is a true (correspondingly, false) claim about logical (or semantic) consequence. This claim is usually denoted by $\Gamma\models A$ where $\Gamma$ is a set of formulas and $A$ is another formula.

That said, a valid argument with false premises can definitely have a true conclusion. For example, $p\land\neg p\models q\to q$ is a valid argument (form).
Is the following argument valid?
1)if 2+2=4,then 3+6=5.......false
2) 2+2 is not 4..........false
conclusion: 3+6 is not 5........true
Here we also have false premises implying true conclusion
 
Since the term "argument" is not usually used in books on mathematical logic, as I wrote above, I am not familiar with the definition of a valid argument when it involves digits, + and =. If the statements occurring in an argument are proposition or predicate formulas that consist of some generic propositional variables, functionl and predicate symbols, then I believe I know the definition, but not when formulas have symbols that usually have a fixed meaning.
 
Evgeny.Makarov said:
Since the term "argument" is not usually used in books on mathematical logic, as I wrote above, I am not familiar with the definition of a valid argument when it involves digits, + and =. If the statements occurring in an argument are proposition or predicate formulas that consist of some generic propositional variables, functionl and predicate symbols, then I believe I know the definition, but not when formulas have symbols that usually have a fixed meaning.
okay let me get rid of the +,=

1) if London is in England ,then Paris is in Gernany......false
2) but London is not in England...............false
conclusion: hence Paris is not in Gernany...........true
Is that argument valid?
That is propositional calculus
London is in England is a proposition which is true
Paris is in Gernany is also a proposition which false
Hence Paris in not in Germany is proposition which is true
London is not in England is a proposition which is false
 
Instead of writing another example it would be more useful to provide a definition of a valid argument.

Evgeny.Makarov said:
If the statements occurring in an argument are proposition or predicate formulas that consist of some generic propositional variables, functional and predicate symbols, then I believe I know the definition, but not when formulas have symbols that usually have a fixed meaning.
Your argument involves not just propositional variables, but propositional constants (such as "London is in England"), which have fixed truth values.
 
i did write on my post No 6 that the argument form corresponding to the argument mentioned is the formula ((p->q)$~p)->~q) where p,q are variables and the above argument is just an instant subsitution of this formula.
But i don't know why that disappeared from my post No 6
 
The argument that derives $\neg q$ from $p\to q$ and $\neg p$ is not valid. You most likely already know this.
 
  • #10
OK
Evgeny.Makarov said:
The argument that derives $\neg q$ from $p\to q$ and $\neg p$ is not valid. You most likely already know this.
OK and one of the substitution instances of this argument form is my argument in post No 6
And i ask you again is the argument in that post valid?
 
  • #11
solakis said:
And i ask you again is the argument in that post valid?
And I am telling you again:
Evgeny.Makarov said:
If the statements occurring in an argument are proposition or predicate formulas that consist of some generic propositional variables, functional and predicate symbols, then I believe I know the definition, but not when formulas have symbols that usually have a fixed meaning.
And knowing your tendency to conceal the definitions you use, I expect you to ask this question several more times without revealing the definition or the reason for your question.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
3K