MHB Is There a Better Way to Approach Vector Identities?

Click For Summary
The discussion focuses on the manipulation of vector identities, specifically involving the expression for the scalar triple product and its implications. Participants explore the relationships between vectors a, b, and c, and how to simplify expressions involving cross and dot products. There is a specific emphasis on understanding the properties of these operations, especially when dealing with scalar and vector results. A correction is noted regarding the order of vectors in a dot product, highlighting the collaborative nature of the discussion. Overall, the thread reflects a deep engagement with vector calculus and the importance of peer interaction in learning.
ognik
Messages
626
Reaction score
2
Please excuse my copying this question in, minimising my input :-)
View attachment 4920

Part (b): Let $ a.b \times c =v $
Then $ a'.b' \times c' = \left( \frac{b \times c}{v}\right) . \left( \frac{c \times a}{v} \times \frac{a \times b}{v}\right) $

$ = v^{-1} \left(b \times c\right). \left[ \left(c \times a\right) \times \left(a \times b\right) \right] $

From a previous exercise, $ \left(a \times b\right) \times \left(c \times d\right) = \left(a.b \times d\right)c - \left(a.b \times c\right)d $ ...

I get $ v^{-1} \left(b \times c\right). \left[ \left(c.a \times b\right)a - \left(c.a \times a\right)b \right] $
the $a \times a$ term = 0, but I am not sure of the laws around something like $ \left(c.a \times b\right)a $

I don't think I can do $ \left(c.a.a \times b.a\right) $ ? So I'm a bit stuck here, maybe there's a better way to approach this..
 

Attachments

  • V_ident.png
    V_ident.png
    11 KB · Views: 111
Physics news on Phys.org
With your definition of $v=\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})$, we have
\begin{align*}
\mathbf{a}'\cdot(\mathbf{b}'\times\mathbf{c}')&=\frac{1}{v^3}\left[(\mathbf{b}\times\mathbf{c})\cdot
((\mathbf{c}\times\mathbf{a})\times(\mathbf{a}\times\mathbf{b}))\right] \\
&=\frac{1}{v^3}\left[(\mathbf{b}\times\mathbf{c})\cdot
[(\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b}))\mathbf{a}-\underbrace{(\mathbf{c}\cdot(\mathbf{a}\times\mathbf{a}))\mathbf{b}}_{=\mathbf{0}}]\right] \\
&=\frac{\mathbf{c}\cdot(\mathbf{b}\times\mathbf{a})}{v^3} \, [(\mathbf{b}\times\mathbf{c})\cdot\mathbf{a}].
\end{align*}
Recognizing that $\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})=\mathbf{b}\cdot(\mathbf{c}\times\mathbf{a})
=\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b})$, can you finish?
 
Ackbach said:
$\frac{\mathbf{c}\cdot(\mathbf{b}\times\mathbf{a})}{v^3} \, [(\mathbf{b}\times\mathbf{c})\cdot\mathbf{a}].$

Its this step I am struggling with, can't see what (identity?) gets this from the previous step?
 
There's a property of the dot product. Suppose $\mathbf{a}$ and $\mathbf{b}$ are vectors, and $c$ is a scalar. Then it is a fact that $\mathbf{a}\cdot(c\mathbf{b})=c(\mathbf{a}\cdot\mathbf{b})$. Then, it's very important to remember that the result of a cross product is a vector, and the result of a dot product is a scalar. It follows that
\begin{align*}
\mathbf{a}'\cdot\left(\mathbf{b}'\times\mathbf{c}'\right)&=\frac{1}{v^3}\left[(\mathbf{b}\times\mathbf{c})\cdot
((\mathbf{c}\times\mathbf{a})\times(\mathbf{a}\times\mathbf{b}))\right] \\
&=\frac{1}{v^3}\left[\underbrace{(\mathbf{b}\times\mathbf{c})}_{\text{vector}}\cdot
[\underbrace{(\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b}))}_{\text{scalar}} \; \mathbf{a}-\underbrace{(\mathbf{c}\cdot(\mathbf{a}\times\mathbf{a}))\mathbf{b}}_{=\mathbf{0}}]\right] \\
&=\frac{1}{v^3}\left[\underbrace{(\mathbf{b}\times\mathbf{c})}_{\text{vector}}\cdot
[\underbrace{(\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b}))}_{\text{scalar}} \; \mathbf{a}\right] \\
&=\frac{\mathbf{c}\cdot(\mathbf{b}\times\mathbf{a})}{v^3} \, [(\mathbf{b}\times\mathbf{c})\cdot\mathbf{a}].
\end{align*}
Does that answer your question?

[EDIT] See below for a correction.
 
It did finally, and just checking - in the c.(A x B) did you accidentally swap A x B to B x A ?
 
ognik said:
It did finally, and just checking - in the c.(A x B) did you accidentally swap A x B to B x A ?

You're quite right. It should be $\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b})$ in the last line. Good catch, and thank you!
 
It feels good to be getting better - and a significant amount of thanks is due to yourself and others who have helped me this year! While I am happy working on my own, I do miss the interaction of a University environment, it makes more of a difference than I expected.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K