Is There a Rational Multiple for the Product of Sines from 1 to 90 Degrees?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the existence of a rational number \( k \) such that the product of sines from 1 to 90 degrees, specifically \( \sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ \sin 90^\circ \), equals \( k\sqrt{10} \). Participants Olinguito and Opalg provided correct solutions to this mathematical problem. The proof involves trigonometric identities and properties of sine functions, demonstrating the relationship between the product of these sine values and the rational number \( k \).

PREREQUISITES
  • Understanding of trigonometric functions, specifically sine.
  • Familiarity with mathematical proofs and identities.
  • Knowledge of rational numbers and their properties.
  • Basic understanding of angles in degrees.
NEXT STEPS
  • Explore trigonometric identities related to sine functions.
  • Study the properties of rational numbers in mathematical proofs.
  • Investigate the relationship between sine products and square roots.
  • Learn about advanced techniques in mathematical problem-solving.
USEFUL FOR

Mathematicians, students studying trigonometry, and anyone interested in advanced mathematical proofs and properties of sine functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Show that there is a rational number $k$ such that $\sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ \sin 90^\circ =k\sqrt{10}$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution!(Cool)

1. Olinguito
2. Opalg

Solution from Olinguito:
Observe that
$$2\sin x^\circ\sin(60-x)^\circ$$
$=\ \cos(2x-60)^\circ-\cos60^\circ$

$=\ \cos(2x-60)^\circ-\dfrac12$

and so
$$4\sin x^\circ\sin(60-x)^\circ\sin(60+x)^\circ$$
$=\ 2\left[\cos(2x-60)^\circ-\dfrac12\right]\sin(60+x)^\circ$

$=\ 2\cos(2x-60)^\circ\sin(60+x)^\circ-\sin(60+x)^\circ$

$=\ \sin(3x)^\circ+\sin(120-x)^\circ-\sin(60+x)^\circ$

$=\ \sin(3x)^\circ+\sin(180-[120-x])^\circ-\sin(60+x)^\circ$

i.e.
$$\boxed{\sin x^\circ\sin(60-x)^\circ\sin(60+x)^\circ\ =\ \frac{\sin(3x)^\circ}4}.$$

So:
$$\sin1^\circ\sin2^\circ\cdots\sin90^\circ$$
$=\ (\sin1^\circ\sin59^\circ\sin61^\circ)(\sin2^\circ\sin58^\circ\sin62^\circ)\cdots(\sin29^\circ\sin31^\circ\sin89^\circ)\sin30^\circ\sin60^\circ\sin90^\circ$

$=\ \dfrac{\sin3^\circ}4\cdot\dfrac{\sin6^\circ}4\cdots\dfrac{\sin87^\circ}4\cdot\dfrac12\cdot\dfrac{\sqrt3}2\cdot1$

$=\ \dfrac{\sqrt3}{4^{30}}\sin3^\circ\sin6^\circ\cdots\sin87^\circ$

$=\ \dfrac{\sqrt3}{4^{30}}(\sin3^\circ\sin57^\circ\sin63^\circ)(\sin6^\circ\sin54^\circ\sin66^\circ)\cdots(\sin27^\circ\sin33^\circ\sin87^\circ)\sin30^\circ\sin60^\circ$

$=\ \dfrac{\sqrt3}{4^{30}}\cdot\dfrac{\sin9^\circ}4\cdot\dfrac{\sin18^\circ}4\cdots\dfrac{\sin81^\circ}4\cdot\dfrac12\cdot\dfrac{\sqrt3}2$

$=\ \dfrac3{4^{40}}\sin9^\circ\sin18^\circ\cdots\sin81^\circ$

$=\ \dfrac3{4^{40}}(\sin9^\circ\sin81^\circ)(\sin18^\circ\sin72^\circ)(\sin27^\circ\sin63^\circ)(\sin36^\circ\sin54^\circ)\sin45^\circ$

$=\ \dfrac3{4^{40}}(\sin9^\circ\cos9^\circ)(\sin18^\circ\cos18^\circ)(\sin27^\circ\cos27^\circ)(\sin36^\circ\cos36^\circ)\cdot\dfrac{\sqrt2}2$

$=\ \dfrac{3\sqrt2}{2^{81}}\cdot\dfrac{\sin18^\circ}2\dfrac{\sin36^\circ}2\cdot\dfrac{\sin54^\circ}2\cdot\dfrac{\sin72^\circ}2$

$=\ \dfrac{3\sqrt2}{2^{85}}\sin18^\circ\cos18^\circ\sin36\cos36^\circ$

$=\ \dfrac{3\sqrt2}{2^{87}}\sin36^\circ\sin72^\circ$

$=\ \dfrac{3\sqrt2}{2^{86}}\sin^236^\circ\cos36^\circ$

$=\ \dfrac{3\sqrt2}{2^{86}}(\cos36^\circ-\cos^336^\circ).$

It remains to work out $\cos36^\circ$. We have
$$\sin36^\circ\ =\ \cos54^\circ$$
$\implies\ 2\sin18^\circ\cos18^\circ\ =\ 4\cos^318^\circ-3\cos18^\circ$

$\implies\ 2\sin18^\circ\ =\ 4\cos^218^\circ-3\ =\ 4-4\sin^218^\circ-3\ =\ 1-4\sin^218^\circ$

$\implies\ 4\sin^218^\circ+2\sin18^\circ-1\ =\ 0$

$\implies\ \sin18^\circ\ (>0) =\ \dfrac{-2+\sqrt{20}}8\ =\ \dfrac{-1+\sqrt5}4.$

So $\cos36^\circ\ =\ 1-2\sin^218^\circ\ =\ \dfrac{1+\sqrt5}4$

$\implies\ \cos^336^\circ\ =\ \dfrac{2+\sqrt5}8$

$\implies \cos36^\circ-\cos^336^\circ\ =\ \dfrac{\sqrt5}8$.

Hence
$$\sin1^\circ\sin2^\circ\cdots\sin90^\circ$$
$=\ \dfrac{3\sqrt2}{2^{86}}\cdot\dfrac{\sqrt5}8\ =\ \boxed{k\sqrt{10}\ \text{where}\ k=\dfrac3{2^{89}}\in\mathbb Q}$.


Alternate solution from Opalg:
This proof uses Chebyshev polynomials. By equation (14) in Multiple-Angle Formulas -- from Wolfram MathWorld, $\sin(180\theta) = -\cos\theta\, U_{179}(\sin \theta)$, where $U_{179}(x)$ is a Chebyshev polynomial of the second kind. And by equation (17) in Chebyshev Polynomial of the Second Kind -- from Wolfram MathWorld, $$U_{179}(x) = \sum_0^{89}(-1)^n{179-n\choose n}(2x)^{179-2n}.$$ It follows that $$\sin(180\theta) = -\cos\theta \sum_0^{89}(-1)^n{179-n\choose n}(2\sin\theta)^{179-2n}. \qquad(*)$$ For every integer $k$, $\sin(180k^\circ) = 0$. If $-89\leqslant k \leqslant 89$ it is also true that $\cos k^\circ \ne0$. It follows from (*) that for $-89\leqslant k \leqslant 89$, $\sin k^\circ$ satisfies the equation $$ \sum_0^{89}(-1)^n{179-n\choose n}(2x)^{179-2n} = 0. \qquad(**)$$ But that is an equation of degree 179, and the 179 solutions $\sin k^\circ \ (-89\leqslant k \leqslant 89)$ are all distinct. So they comprise all the solutions. One of the solutions is $x=0$ (corresponding to $k=0$), and the others are $\pm\sin k^\circ \ (1\leqslant k \leqslant 89)$ (because $\sin(-\theta) = -\sin\theta$). Divide (**) by $x$ to eliminate the solution $x=0$, and it follows that the solutions of $$ \sum_0^{89}(-1)^n{179-n\choose n}2^{179-2n}x^{178-2n} = 0$$ are $\pm\sin k^\circ \ (1\leqslant k \leqslant 89)$. Write the equation as $$ 2^{179}x^{178} - \ldots - 2{90\choose 89} = 0, \\ 2^{178}x^{178} - \ldots - 90 = 0, $$ to see that the product of the roots is $$(\sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ)^2 = \dfrac{90}{2^{178}}.$$ Now take the square root and toss in the fact that $\sin90^\circ = 1$, to get $$\sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ \sin 90^\circ = \frac3{2^{89}}\sqrt{10}.$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K