Is there a solution to the equation $x^2+2y^2=3z^2$?

  • MHB
  • Thread starter Ackbach
  • Start date
  • Tags
    2017
In summary, the equation $x^2+2y^2=3z^2$ is a Diophantine equation involving three variables with infinite solutions. These solutions can be found using methods such as trial and error, modular arithmetic, or the parametrization method. There are patterns in the solutions, and this equation is important in number theory and has practical applications in cryptography and coding theory.
  • #1
Ackbach
Gold Member
MHB
4,155
93
Here is this week's POTW:

-----

Let $S_0$ be a finite set of positive integers. We define finite sets $S_1,S_2,\ldots$ of positive integers as follows: the integer $a$ is in $S_{n+1}$ if and only if exactly one of $a-1$ or $a$ is in $S_n$. Show that there exist infinitely many integers $N$ for which $S_N=S_0\cup\{N+a: a\in S_0\}$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
  • #2
Re: Problem Of The Week # 269 - Jun 28, 2017

This was Problem B-5 in the 2000 William Lowell Putnam Mathematical Competition.

No one answered this week's POTW. The solution, attributed to Kiran Kedlaya and his associates, follows:

We claim that all integers $N$ of the form $2^k$, with $k$ a positive integer and $N>\max\{S_0\}$, satisfy the desired conditions.

It follows from the definition of $S_n$, and induction on $n$, that
\begin{align*}
\sum_{j \in S_n} x^j &\equiv (1+x) \sum_{j \in S_{n-1}} x^j \\
&\equiv (1+x)^n \sum_{j \in S_0} x^j \pmod{2}.
\end{align*}
From the identity $(x+y)^2 \equiv x^2+y^2 \pmod{2}$ and induction on $n$, we have $(x+y)^{2^n} \equiv x^{2^n} + y^{2^n} \pmod{2}$. Hence if we choose $N$ to be a power of 2 greater than $\max\{S_0\}$, then
\[
\sum_{j \in S_n} \equiv (1+x^N) \sum_{j \in S_0} x^j
\]
and $S_N=S_0\cup\{N+a: a\in S_0\}$, as desired.
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Back
Top