Is there a way to guarantee that the sequence will eventually reach 0?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The discussion centers on a mathematical problem involving a polynomial function with integer coefficients, defined by the sequence \(a_0, a_1, \ldots\) where \(a_0=0\) and \(a_{n+1}=f(a_n)\). It is established that if there exists a positive integer \(m\) such that \(a_m=0\), then either \(a_1=0\) or \(a_2=0\). This problem was originally featured as Problem A-6 in the 2000 William Lowell Putnam Mathematical Competition, with a correct solution provided by a user named Kiwi.

PREREQUISITES
  • Understanding of polynomial functions with integer coefficients
  • Knowledge of sequences and their properties
  • Familiarity with mathematical proof techniques
  • Basic concepts of integer arithmetic
NEXT STEPS
  • Study polynomial functions and their behavior in sequences
  • Explore mathematical induction as a proof technique
  • Investigate the properties of integer sequences
  • Review problems from the William Lowell Putnam Mathematical Competition for advanced problem-solving skills
USEFUL FOR

Mathematics students, educators, and competitive problem solvers interested in polynomial sequences and proof strategies will benefit from this discussion.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let $f(x)$ be a polynomial with integer coefficients. Define a sequence $a_0,a_1,\ldots$ of integers such that $a_0=0$ and $a_{n+1}=f(a_n)$ for all $n\geq 0$. Prove that if there exists a positive integer $m$ for which $a_m=0$ then either $a_1=0$ or $a_2=0$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 264 - May 23, 2017

This was Problem A-6 in the 2000 William Lowell Putnam Mathematical Competition.

Congratulations to Kiwi for his correct solution, which follows:

Let \(f(x)=\sum^r_0 b_ix^i.\)

Then
\(a_0=0\), \(a_1=f(a_0)=f(0)=b_0\), \(a_2=f(b_0)\)

Now if \(a_m=0\) then \(f(a_{m-1})=0\) and \(a_{m-1}\) is a root of f(x). Therefore

\((x-a_{m-1})\) divides \(\sum^r_0 b_ix^i,\) from which we can see that \(a_{m-1}\) divides \(b_0\) as they are all integers.

Case 1; \(b_0 = 0\)
\(a_1=f(a_0)=f(0)=b_0=0\) and we are done.

Case 2; \(b_0 \neq 0\)
Now \(b_0\) divides \(a_1\) because they are equal. Assume as an inductive hypothesis that \(b_0\) divides all \(a_i\) then
\(a_{n+1}=f(a_n)= \sum^r_1 b_i(a_n)^i+b_0\) which is divisible by \(b_0\). So by induction \(b_0\) divides all \(a_i\).

So \(b_0\) divides \(a_{m-1}\) and \(a_{m-1}\) divides \(b_0;\) therefore \(a_{m-1}=b_0\) and therefore

\(a_2=f(a_1)=f(b_0)=f(a_{m-1})=a_m=0.\)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K