MHB Is There an Easier Method to Prove $n^2>n$ for Negative Integers?

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion centers on proving the inequality \( n^2 > n \) for negative integers. Several examples demonstrate that the inequality holds true for specific negative integers like -1, -2, and -3, confirming the pattern. The proof attempts to establish that \( n^2 - n > 0 \) by transforming it into \( n(n-1) > 0 \), but the reasoning becomes unclear when addressing the conditions for negative integers. Participants suggest that the proof could be simplified by recognizing that for negative \( n \), \( n^2 \) is always positive and greater than \( n \). The conversation concludes with a call for clearer methods to solidify the proof.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

Directions: Decide whether the statement is a theorem. If it is a theorem, prove it. if not, give a counterexample.

$$n^2>n$$ for each negative integer n

Examples might work for this inequality

$$n^2-n>0$$

Let n=-1. Then
$$(-1)^2-(-1)>0$$
$$1+1>0$$
$$2>0$$

Let n=-2. Then
$$(-2)^2-(-2)>0$$
$$4+2>0$$
$$6>0$$

Let n=-3. Then
$$(-3)^2-(-3)>0$$
$$9+3>0$$
$$12>0$$

I figure out the pattern of the inequality. So I need to prove it for all cases.

PROOF: Let n be the negative integers. Then,
$$n^2-n>0$$
$$n(n-1)>0$$
$$n>0 \land n>1$$

Here is where I am stuck with my reasoning. Is there better way to prove it?

Thanks
Cbarker1
 
Mathematics news on Phys.org
$ n^2 \ge \sqrt{ n^2 } = |n| > n $ if $ n $ is negative.
 
greg1313 said:
$ n^2 \ge \sqrt{ n^2 } = |n| > n $ if $ n $ is negative.

Yes, it is true.

But I think there is an easier method to prove this, right?
So, I will rewrite the statement into a condition statement.

If n is a neg. integer, then $n^2>n$.

Work for this statement and I am stuck in this part upcoming:

Proof: Suppose n is negative integer. Then, $n>0$. Then $n-1>0$. So $n-1>n>0$.

What to do next in this proof?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
3
Replies
105
Views
7K
Replies
4
Views
1K
Replies
7
Views
2K