MHB Is this the correct way to rewrite absolute value statements?

AI Thread Summary
The discussion confirms that the absolute value expressions for the given statements are correct. The distance between two points can be expressed in either order, as shown by the property that |x| = |-x|. The participants validate the expressions for distances involving x and constants, including x^3 and -1. They also agree that all rewritten statements accurately represent the original conditions. Overall, the rewrites are deemed correct and consistent with mathematical principles.
mathdad
Messages
1,280
Reaction score
0
Rewrite each statement using absolute values.

1. The distance between x and 4 is at least 8.

| x - 4 | > or = 8

Can this also be expressed as | 4 - x | > or = 8?

If so, why?

2. The distance between x^3 and -1 is at most 0.001.

| x^3 -(-1) | < or = 0.001

Can this also be expressed as | - 1 - x^3 | < or = 0.001?

3. The distance between x and 1 is less than 1/2.

| x - 1 | < 1/2

4. The distance between x and 1 exceeds 1/2.

| x - 1 | > 1/2

Is any of this correct?
 
Mathematics news on Phys.org
RTCNTC said:
Rewrite each statement using absolute values.

1. The distance between x and 4 is at least 8.

| x - 4 | > or = 8

Can this also be expressed as | 4 - x | > or = 8?

If so, why?

Your expressions are correct, and the reason you can express it either way is:

$$|-x|=|x|$$

The distance between 4 and x is the same as the distance between x and 4.

RTCNTC said:
2. The distance between x^3 and -1 is at most 0.001.

| x^3 -(-1) | < or = 0.001

Can this also be expressed as | - 1 - x^3 | < or = 0.001?

Yes, and you could even write:

$$\left|x^3+1\right|\le0.001$$

RTCNTC said:
3. The distance between x and 1 is less than 1/2.

| x - 1 | < 1/2

Correct. :D

RTCNTC said:
4. The distance between x and 1 exceeds 1/2.

| x - 1 | > 1/2

Is any of this correct?

It all looks good to me. (Yes)
 
Correct to me means I understood the textbook lecture.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top