Is This Trigonometric Identity Valid for All Values?

Click For Summary
SUMMARY

The discussion centers on the trigonometric identity involving the equation $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$, which holds true for all real values of $a$, $b$, $x$, and $y$. Participants aim to prove that this leads to the conclusion $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$. The identity is validated through algebraic manipulation and the properties of trigonometric functions. The discussion concludes with a positive acknowledgment of the proof's validity by a participant named kaliprasad.

PREREQUISITES
  • Understanding of trigonometric identities and functions
  • Knowledge of algebraic manipulation techniques
  • Familiarity with real number properties
  • Basic skills in mathematical proof techniques
NEXT STEPS
  • Study advanced trigonometric identities and their proofs
  • Explore algebraic techniques for manipulating complex equations
  • Learn about the properties of real numbers in mathematical proofs
  • Investigate the application of trigonometric functions in calculus
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching mathematical proofs, and anyone interested in advanced algebraic concepts.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$ for all real $a,\,b,\,x,\,y$.

Prove that $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$
 
Mathematics news on Phys.org
anemone said:
Let $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$ for all real $a,\,b,\,x,\,y$.

Prove that $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$

$\dfrac{\cos^4 a }{x} + \dfrac{\sin ^4 a }{y}= \dfrac{1}{x+y}$
hence
$\dfrac{\cos^4 a }{x} + \dfrac{(1-\cos^2 a )^2}{y}= \dfrac{1}{x+y}$
or
$\dfrac{\cos^4 a }{x} + \dfrac{1-2\cos^2 a +cos^4 a}{y}= \dfrac{1}{x+y}$
or
$(x+y)^2\cos^4a-2 x(x +y) \cos^2 a + x(x+y)= xy$
or $(x+y)^2\cos^4a -2 x(x +y) \cos^2 a + x^2= 0$
or $((x+y)\cos^2a -x)^2=0$
hence $\cos^2 a = \dfrac{x}{x+y}\cdots(1)$
from (1)
$\sin ^2 a = 1-\dfrac{x}{x+y}=\dfrac{y}{x+y}\cdots(2)$
using (1) and (2)
$\dfrac{\cos^8 a}{x^3} + \dfrac{\sin ^8 a}{y^3}$
= $\dfrac{(\cos^2 a)^4}{x^3} + \dfrac{(\sin ^2 a)^4}{y^3}$
= $\dfrac{(\frac{x}{x+y})^4}{x^3} + \dfrac{(\frac{y}{x+y})^4}{y^3}$
= $\dfrac{x}{(x+y)^4} + \dfrac{y}{(x+y)^4}$
= $\dfrac{x+y}{(x+y)^4}$
= $\dfrac{1}{(x+y)^3}$
 
Good job, kaliprasad!:cool:
 

Similar threads

Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K