MHB Is This Trigonometric Identity Valid for All Values?

Click For Summary
The discussion centers on proving the trigonometric identity involving the equation $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$ for all real values of $a$, $b$, $x$, and $y$. Participants aim to demonstrate that this leads to the conclusion $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$. The conversation highlights the mathematical steps and reasoning necessary to validate the identity. The proof requires careful manipulation of the original equation and understanding of trigonometric properties. Overall, the identity is confirmed to hold true under the specified conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$ for all real $a,\,b,\,x,\,y$.

Prove that $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$
 
Mathematics news on Phys.org
anemone said:
Let $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$ for all real $a,\,b,\,x,\,y$.

Prove that $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$

$\dfrac{\cos^4 a }{x} + \dfrac{\sin ^4 a }{y}= \dfrac{1}{x+y}$
hence
$\dfrac{\cos^4 a }{x} + \dfrac{(1-\cos^2 a )^2}{y}= \dfrac{1}{x+y}$
or
$\dfrac{\cos^4 a }{x} + \dfrac{1-2\cos^2 a +cos^4 a}{y}= \dfrac{1}{x+y}$
or
$(x+y)^2\cos^4a-2 x(x +y) \cos^2 a + x(x+y)= xy$
or $(x+y)^2\cos^4a -2 x(x +y) \cos^2 a + x^2= 0$
or $((x+y)\cos^2a -x)^2=0$
hence $\cos^2 a = \dfrac{x}{x+y}\cdots(1)$
from (1)
$\sin ^2 a = 1-\dfrac{x}{x+y}=\dfrac{y}{x+y}\cdots(2)$
using (1) and (2)
$\dfrac{\cos^8 a}{x^3} + \dfrac{\sin ^8 a}{y^3}$
= $\dfrac{(\cos^2 a)^4}{x^3} + \dfrac{(\sin ^2 a)^4}{y^3}$
= $\dfrac{(\frac{x}{x+y})^4}{x^3} + \dfrac{(\frac{y}{x+y})^4}{y^3}$
= $\dfrac{x}{(x+y)^4} + \dfrac{y}{(x+y)^4}$
= $\dfrac{x+y}{(x+y)^4}$
= $\dfrac{1}{(x+y)^3}$
 
Good job, kaliprasad!:cool:
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K