MHB Is This Trigonometric Identity Valid for All Values?

Click For Summary
The discussion centers on proving the trigonometric identity involving the equation $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$ for all real values of $a$, $b$, $x$, and $y$. Participants aim to demonstrate that this leads to the conclusion $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$. The conversation highlights the mathematical steps and reasoning necessary to validate the identity. The proof requires careful manipulation of the original equation and understanding of trigonometric properties. Overall, the identity is confirmed to hold true under the specified conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$ for all real $a,\,b,\,x,\,y$.

Prove that $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$
 
Mathematics news on Phys.org
anemone said:
Let $\dfrac{\cos^4 a}{x}+\dfrac{\sin^4 a}{y}=\dfrac{1}{x+y}$ for all real $a,\,b,\,x,\,y$.

Prove that $\dfrac{\cos^8 a}{x^3}+\dfrac{\sin^8 a}{y^3}=\dfrac{1}{(x+y)^3}$

$\dfrac{\cos^4 a }{x} + \dfrac{\sin ^4 a }{y}= \dfrac{1}{x+y}$
hence
$\dfrac{\cos^4 a }{x} + \dfrac{(1-\cos^2 a )^2}{y}= \dfrac{1}{x+y}$
or
$\dfrac{\cos^4 a }{x} + \dfrac{1-2\cos^2 a +cos^4 a}{y}= \dfrac{1}{x+y}$
or
$(x+y)^2\cos^4a-2 x(x +y) \cos^2 a + x(x+y)= xy$
or $(x+y)^2\cos^4a -2 x(x +y) \cos^2 a + x^2= 0$
or $((x+y)\cos^2a -x)^2=0$
hence $\cos^2 a = \dfrac{x}{x+y}\cdots(1)$
from (1)
$\sin ^2 a = 1-\dfrac{x}{x+y}=\dfrac{y}{x+y}\cdots(2)$
using (1) and (2)
$\dfrac{\cos^8 a}{x^3} + \dfrac{\sin ^8 a}{y^3}$
= $\dfrac{(\cos^2 a)^4}{x^3} + \dfrac{(\sin ^2 a)^4}{y^3}$
= $\dfrac{(\frac{x}{x+y})^4}{x^3} + \dfrac{(\frac{y}{x+y})^4}{y^3}$
= $\dfrac{x}{(x+y)^4} + \dfrac{y}{(x+y)^4}$
= $\dfrac{x+y}{(x+y)^4}$
= $\dfrac{1}{(x+y)^3}$
 
Good job, kaliprasad!:cool:
 

Similar threads

Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
986
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K