MHB Is Weak Stationarity of Y_k Achievable in AR(1) Process?

fireb
Messages
11
Reaction score
0
Consider AR(1) process \(X_t=bX_{t-1}+e_t\)
where \(e_t\) with mean of 0 and variance of \(\sigma^2\)
and |b| <1
Let \( a_k \) be a recursive sequence with \( a_1 \) =1 and \( a_{k+1} = a_k + P_k +1\) for \( k = 1, 2 ,...,\) where \(P_k \) is Poisson iid r.v with mean = 1
also, assume \(P_t\) and \(X_t\) are independent.
Is \(Y_k\)= \(X_{a_k}\) for k =1,2,... weakly stationary?There arent any similar problems in the my textbook and i have no clue how to begin
Im not looking for a straight answer, just something to point me in the right direction.
Thanks in advance
 
Physics news on Phys.org
sam said:
Consider AR(1) process \(X_t=bX_{t-1}+e_t\)
where \(e_t\) with mean of 0 and variance of \(\sigma^2\)
and |b| <1
Let \( a_k \) be a recursive sequence with \( a_1 \) =1 and \( a_{k+1} = a_k + P_k +1\) for \( k = 1, 2 ,...,\) where \(P_k \) is Poisson iid r.v with mean = 1
also, assume \(P_t\) and \(X_t\) are independent.
Is \(Y_k\)= \(X_{a_k}\) for k =1,2,... weakly stationary?There arent any similar problems in the my textbook and i have no clue how to begin
Im not looking for a straight answer, just something to point me in the right direction.
Thanks in advance

Hi

I have some experience with AR but don't claim to be an expert or provide you with a correct solution. I can't post links yet...

According to a basic definition of weakly stationary (google wikipedia and weakly stationary) we need to see whether the mean and variance of the AR model changes over time. If it does, then the process is not weakly stationary. From your definition above the variance and mean of \(e_t\) is not modified and does not change over time. Whilst I cannot state or be confident that this is the answer, my hint would be that this points to weakly stationary.

However according to section 4.1 (google weakly stationary definition and see the result from ohio state) you need to show the expectation of \(X_t\) is finite and does not depend on t (which I don't think it does but this is where the problem may lie)

Hope this helps, again this is not the correct solution just some hints.
Cheers
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

4
Replies
175
Views
25K
Back
Top