MHB Jack's question at Yahoo Answers regarding finding gradients

  • Thread starter Thread starter MarkFL
  • Start date Start date
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

LOGARITHMIC FUNCTION, MATHS QUESTION PLEASEE HELPP ME IM BEGGIN YOU!?

Consider the curve f(x)=ln(x+1). find the gradients of the possible tangents to f(x) which makes of 45 degrees with the tangent of f(x) at the point where x=1

Please explain your answer thankyou

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Jack,

First, we want to find the gradient of the line tangent to the given logarithmic curve where $x=1$. To do so, we must differentiate the curve with respect to $x$:

$$f'(x)=\frac{1}{x+1}$$

Now, we evaluate this for $x=1$:

$$f'(1)=\frac{1}{2}$$

Then, to find the possible gradients $m$ that make an angle of 45° with the tangent line at its point of tangency, we may equate the magnitude of the difference in the angles of inclination to $$\frac{\pi}{4}$$.

$$\left|\tan^{-1}(m)-\tan^{-1}\left(\frac{1}{2} \right) \right|=\frac{\pi}{4}$$

$$\tan^{-1}(m)-\tan^{-1}\left(\frac{1}{2} \right)=\pm\frac{\pi}{4}$$

Taking the tangent of both sides, we find:

$$\tan\left(\tan^{-1}(m)-\tan^{-1}\left(\frac{1}{2} \right) \right)=\tan\left(\pm\frac{\pi}{4} \right)$$

Using the angle-difference identity for tangent on the left, and simplifying the right, we obtain:

$$\frac{m-\frac{1}{2}}{1+\frac{m}{2}}=\pm1$$

Now we may solve for $m$. Multiply through by $$2\left(1+\frac{m}{2} \right)$$

$$2m-1=\pm(2+m)$$

Square both sides, then arrange as the difference of squares:

$$(2m-1)^2-(2+m)^2=0$$

Apply the difference of squares formula:

$$(2m-1+2+m)(2m-1-2-m)=0$$

Combine like terms:

$$(3m+1)(m-3)=0$$

Hence the possible gradients are:

$$m=-\frac{1}{3},3$$

As we should expect, the product of the two gradients is -1 as the two lines would be perpendicular to one another.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top