Jason's calculus questions

  • Context: MHB 
  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Calculus
Click For Summary

Discussion Overview

This thread discusses various calculus problems involving stationary points, derivatives, and the behavior of functions. The problems range from cubic functions to particle motion and exponential growth, exploring both theoretical and applied aspects of calculus.

Discussion Character

  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • Post 1 presents a cubic function that touches a line at a specific point and has a stationary point, leading to a series of equations to determine the coefficients of the cubic.
  • Post 2 explores stationary points of a function defined by a product of terms, deriving conditions for stationary points based on the derivative.
  • Post 3 calculates stationary points for a rational function, identifying the points where the derivative equals zero and providing their coordinates.
  • Post 4 discusses the motion of a particle, calculating initial position, initial velocity, and conditions for zero velocity, along with acceleration.
  • Post 5 analyzes another particle's motion, deriving acceleration as a function of time from the position function and discussing the instantaneous rate of change of output for a manufacturing process.

Areas of Agreement / Disagreement

Participants generally agree on the methods used to find stationary points and derivatives, but there are no explicit resolutions to any disagreements or uncertainties in the calculations presented.

Contextual Notes

Some posts involve multiple steps and assumptions that are not fully resolved, such as the implications of stationary points and the behavior of functions at those points. The discussions also depend on the definitions and interpretations of derivatives and stationary points.

Who May Find This Useful

Students and educators in calculus, particularly those interested in applications of derivatives and stationary points in various contexts.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
The graph of $\displaystyle \begin{align*} y = a\,x^3 + b\,x^2 + c\,x + d \end{align*}$ touches the line $\displaystyle \begin{align*} 2\,y + 6\,x = 15 \end{align*}$ at the point $\displaystyle \begin{align*} A \left( 0, \frac{15}{2} \right) \end{align*}$ and has a stationary point at $\displaystyle \begin{align*} B\left( 3, -6 \right) \end{align*}$. Find the values of $\displaystyle \begin{align*} a, b, c \end{align*}$ and $\displaystyle \begin{align*} d \end{align*}$.

Since the two functions touch at $\displaystyle \begin{align*} A\left( 0, \frac{15}{2} \right) \end{align*}$ that means that this point lies on the cubic function. Thus

$\displaystyle \begin{align*} \frac{15}{2} &= a\left( 0 \right) ^3 + b\left( 0 \right) ^2 + c\left( 0 \right) + d \\ \frac{15}{2} &= d \end{align*}$

So we can rewrite the cubic as $\displaystyle \begin{align*} y = a\,x^3 + b\,x^2 + c\,x + \frac{15}{2} \end{align*}$.

Also since this is a point where the line just touches the cubic, that means the line is a tangent to the cubic at that point. Thus the gradient of the curve at that point is equal to the gradient of the line.

The gradient of the line is $\displaystyle \begin{align*} -3 \end{align*}$ since the line can be rewritten as $\displaystyle \begin{align*} y = -3\,x + \frac{15}{2} \end{align*}$, thus

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= 3\,a\,x^2 + 2\,b\,x + c \\ -3 &= 3\,a\left( 0 \right) ^2 + 2\,b\left( 0 \right) + c \\ -3 &= c \end{align*}$

So we can rewrite the cubic as $\displaystyle \begin{align*} y = a\,x^3 + b\,x^2 - 3\,x + \frac{15}{2} \end{align*}$.


Since there is a stationary point on the cubic at $\displaystyle \begin{align*} B\left( 3, -6 \right) \end{align*}$, that means that the point lies on the cubic and also the derivative is 0 at that point.

$\displaystyle \begin{align*} -6 &= a\left( 3 \right) ^3 + b\left( 3 \right) ^2 - 3 \left( 3 \right) + \frac{15}{2} \\ -6 &= 27\,a + 9\,b - 9 + \frac{15}{2} \\ -6 &= 27\,a + 9\,b - \frac{3}{2} \\ -\frac{9}{2} &= 9\,a + 3\,b \\ -3 &= 6\,a + 2\,b \end{align*}$

Also

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= 3\,a\,x^2 + 2\,b\,x -3 \\ 0 &= 3\,a\left( 3 \right) ^2 + 2\,b\left( 3 \right) - 3 \\ 3 &= 27\,a + 6\,b \\ 1 &= 9\,a + 2\,b \end{align*}$

Solving these resulting equations simultaneously gives

$\displaystyle \begin{align*} 1 - \left( -3 \right) &= \left( 9\,a + 2\,b \right) - \left( 6\,a + 2\,b \right) \\ 4 &= 3\,a \\ a &= \frac{4}{3} \end{align*}$

and

$\displaystyle \begin{align*} -3 &= 6\left( \frac{4}{3} \right) + 2\,b \\ -3 &= 8 + 2\,b \\ -11 &= 2\,b \\ b &= -\frac{11}{2} \end{align*}$

So the cubic is $\displaystyle \begin{align*} y = \frac{4}{3}\,x^3 - \frac{11}{2}\,x^2 - 3\,x + \frac{15}{2} \end{align*}$.
 
Physics news on Phys.org
Find the $\displaystyle \begin{align*} x \end{align*}$ co-ordinates, in terms of $\displaystyle \begin{align*} n \end{align*}$, of the stationary points of the curve with equation $\displaystyle \begin{align*} y = \left( 2\,x - 1 \right) ^n \left( x + 2 \right) \end{align*}$, where $\displaystyle \begin{align*} n \end{align*}$ is a natural number.

Stationary points occur where the derivative is 0, so

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \left( 2\,x - 1 \right) ^n \left( 1 \right) + 2\,n\,\left( 2\,x - 1 \right)^{n-1} \left( x + 2 \right) \\ 0 &= \left( 2\,x - 1 \right) ^{n - 1} \left[ \left( 2\,x - 1 \right) + 2\,n\,\left( x + 2 \right) \right] \\ 0 &= \left( 2\,x - 1 \right) ^{n - 1} \left( 2\,x - 1 + 2\,n\,x + 4\,n \right) \end{align*}$

So

$\displaystyle \begin{align*} \left( 2\,x - 1 \right) ^{n - 1} &= 0 \\ 2\,x - 1 &= 0 \\ 2\,x &= 1 \\ x &= \frac{1}{2} \end{align*}$

and

$\displaystyle \begin{align*} 2\,x - 1 + 2\,n\,x + 4\,n &= 0 \\ \left( 2 + 2\,n \right) x &= 1 - 4\,n \\ x &= \frac{1 - 4\,n }{2 + 2\,n} \end{align*}$
 
Find the co-ordinates of the stationary points of the curve with equation $\displaystyle \begin{align*} y = \frac{x}{x^2 + 1} \end{align*}$.

Stationary points occur where the derivative is 0, so

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1\left( x^2 + 1 \right) - x \left( 2\,x \right)}{\left( x^2 + 1 \right) ^2} \\ 0 &= \frac{x^2 + 1 - 2\,x^2}{\left( x^2 + 1 \right)^2} \\ 0 &= \frac{1 - x^2}{\left( x^2 + 1 \right) ^2} \\ 0 &= 1 - x^2 \\ x^2 &= 1 \\ x &= \pm 1 \end{align*}$

When $\displaystyle \begin{align*} x = -1 \end{align*}$

$\displaystyle \begin{align*} y &= \frac{-1}{\left( -1 \right) ^2 + 1 } \\ &= \frac{-1}{1 + 1} \\ &= -\frac{1}{2} \end{align*}$

and when $\displaystyle \begin{align*} x = 1 \end{align*}$

$\displaystyle \begin{align*} y &= \frac{1}{1^2 + 1} \\ &= \frac{1}{1 + 1} \\ &= \frac{1}{2} \end{align*}$

Thus the stationary points are $\displaystyle \begin{align*} \left( -1, -\frac{1}{2} \right) \end{align*}$ and $\displaystyle \begin{align*} \left( 1, \frac{1}{2} \right) \end{align*}$.
 
A particle moves in a straight line such that its position, $\displaystyle \begin{align*} x \end{align*}$ cm, relative to a point $\displaystyle \begin{align*} O \end{align*}$, at time $\displaystyle \begin{align*} t \end{align*}$ seconds is given by the equation $\displaystyle \begin{align*} x\left( t \right) = 8+ 2\,t - t^2 \end{align*}$. Find:

a) its initial position
b) its initial velocity
c) when and where the velocity is zero
d) its acceleration at time $\displaystyle \begin{align*} t \end{align*}$.

a) Initially $\displaystyle \begin{align*} t = 0 \end{align*}$ so

$\displaystyle \begin{align*} x \left( 0 \right) &= 8 + 2\left( 0 \right) - 0^2 \\ &= 8 \end{align*}$

b) The velocity is the derivative of position, so

$\displaystyle \begin{align*} v\left( t \right) &= 2 - 2\,t \\ v \left( 0 \right) &= 2 - 2 \left( 0 \right) \\ &= 2 \end{align*}$

c)
$\displaystyle \begin{align*} 0 &= 2 - 2\,t \\ 2\,t &= 2 \\ t &= 1 \\ \\ x\left( 1 \right) &= 8 + 2\left( 1 \right) - 1^2 \\ &= 8 + 2 - 1 \\ &= 9 \end{align*}$

d) Acceleration is the derivative of velocity, so

$\displaystyle \begin{align*} a\left( t \right) &= -2 \end{align*}$
 
A particle is moving in a straight line such that its position, $\displaystyle \begin{align*} x \end{align*}$ cm, relative to a point $\displaystyle \begin{align*} O \end{align*}$ at time $\displaystyle \begin{align*} t \end{align*}$ seconds, is given by $\displaystyle \begin{align*} x\left( t \right) = \sqrt{2\,t^2 + 2} \end{align*}$. Find the acceleration as a function of $\displaystyle \begin{align*} t \end{align*}$.

Acceleration is the second derivative of position, so

$\displaystyle \begin{align*} x\left( t \right) &= \left( 2\,t^2 + 2 \right) ^{\frac{1}{2}} \\ \\ v\left( t \right) &= 4\,t \left( \frac{1}{2} \right) \left( 2\,t^2 + 2 \right) ^{-\frac{1}{2}} \\ &= 2\,t \, \left( 2\,t^2 + 2 \right) ^{-\frac{1}{2}} \\ \\ a\left( t \right) &= 2\,\left( 2\,t^2+ 2 \right) ^{-\frac{1}{2}} + 2\,t \left( -\frac{1}{2} \right) \left( 2\,t^2 + 2 \right) ^{-\frac{3}{2}} \\ &= 2\,\left( 2\,t^2 + 2 \right) ^{-\frac{1}{2}} - t \,\left( 2\,t^2 + 2 \right) ^{-\frac{3}{2}} \end{align*}$

- - - Updated - - -

A manufacturing company has a daily output on day $\displaystyle \begin{align*} t \end{align*}$ of a production run given by $\displaystyle \begin{align*} y = 6000\,\left( 1 - \mathrm{e}^{-0.5\,t} \right) \end{align*}$, where the first day of the production run is $\displaystyle \begin{align*} t = 0 \end{align*}$. Find the instantaneous rate of change of output $\displaystyle \begin{align*} y \end{align*}$ with respect to $\displaystyle \begin{align*} t \end{align*}$ on the 10th day.

The 10th day is when $\displaystyle \begin{align*} t = 9 \end{align*}$.

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}t} &= 6000\,\left( -0.5\,\mathrm{e}^{-0.5\,t} \right) \\ &= -3000\,\mathrm{e}^{-0.5\,t} \\ &= -3000\,\mathrm{e}^{-0.5 \cdot 9} \\ &= -3000\,\mathrm{e}^{-4.5} \end{align*}$

- - - Updated - - -

The mass, $\displaystyle \begin{align*} m \end{align*}$ kg, of radioactive lead remaining in a sample $\displaystyle \begin{align*} t \end{align*}$ hours after observation began is given by $\displaystyle \begin{align*} m = 2\,\mathrm{e}^{-0.2\,t} \end{align*}$. Express the rate of decay as a function of $\displaystyle \begin{align*} m \end{align*}$.

$\displaystyle \begin{align*} \frac{\mathrm{d}m}{\mathrm{d}t} &= -0.2\cdot 2\,\mathrm{e}^{-0.2\,t} \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= -0.2\,m \end{align*}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
6K
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K