MHB Jason's calculus questions

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Calculus
Click For Summary
The discussion focuses on solving calculus problems involving cubic functions and their properties. A cubic function is derived from the conditions that it touches a line at a specific point and has a stationary point at another. The coefficients of the cubic function are determined to be a = 4/3, b = -11/2, c = -3, and d = 15/2. Additionally, the discussion explores stationary points of various functions, including a particle's motion and the instantaneous rate of change of a production output function. The final results highlight the importance of derivatives in finding stationary points and rates of change in different contexts.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
The graph of $\displaystyle \begin{align*} y = a\,x^3 + b\,x^2 + c\,x + d \end{align*}$ touches the line $\displaystyle \begin{align*} 2\,y + 6\,x = 15 \end{align*}$ at the point $\displaystyle \begin{align*} A \left( 0, \frac{15}{2} \right) \end{align*}$ and has a stationary point at $\displaystyle \begin{align*} B\left( 3, -6 \right) \end{align*}$. Find the values of $\displaystyle \begin{align*} a, b, c \end{align*}$ and $\displaystyle \begin{align*} d \end{align*}$.

Since the two functions touch at $\displaystyle \begin{align*} A\left( 0, \frac{15}{2} \right) \end{align*}$ that means that this point lies on the cubic function. Thus

$\displaystyle \begin{align*} \frac{15}{2} &= a\left( 0 \right) ^3 + b\left( 0 \right) ^2 + c\left( 0 \right) + d \\ \frac{15}{2} &= d \end{align*}$

So we can rewrite the cubic as $\displaystyle \begin{align*} y = a\,x^3 + b\,x^2 + c\,x + \frac{15}{2} \end{align*}$.

Also since this is a point where the line just touches the cubic, that means the line is a tangent to the cubic at that point. Thus the gradient of the curve at that point is equal to the gradient of the line.

The gradient of the line is $\displaystyle \begin{align*} -3 \end{align*}$ since the line can be rewritten as $\displaystyle \begin{align*} y = -3\,x + \frac{15}{2} \end{align*}$, thus

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= 3\,a\,x^2 + 2\,b\,x + c \\ -3 &= 3\,a\left( 0 \right) ^2 + 2\,b\left( 0 \right) + c \\ -3 &= c \end{align*}$

So we can rewrite the cubic as $\displaystyle \begin{align*} y = a\,x^3 + b\,x^2 - 3\,x + \frac{15}{2} \end{align*}$.


Since there is a stationary point on the cubic at $\displaystyle \begin{align*} B\left( 3, -6 \right) \end{align*}$, that means that the point lies on the cubic and also the derivative is 0 at that point.

$\displaystyle \begin{align*} -6 &= a\left( 3 \right) ^3 + b\left( 3 \right) ^2 - 3 \left( 3 \right) + \frac{15}{2} \\ -6 &= 27\,a + 9\,b - 9 + \frac{15}{2} \\ -6 &= 27\,a + 9\,b - \frac{3}{2} \\ -\frac{9}{2} &= 9\,a + 3\,b \\ -3 &= 6\,a + 2\,b \end{align*}$

Also

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= 3\,a\,x^2 + 2\,b\,x -3 \\ 0 &= 3\,a\left( 3 \right) ^2 + 2\,b\left( 3 \right) - 3 \\ 3 &= 27\,a + 6\,b \\ 1 &= 9\,a + 2\,b \end{align*}$

Solving these resulting equations simultaneously gives

$\displaystyle \begin{align*} 1 - \left( -3 \right) &= \left( 9\,a + 2\,b \right) - \left( 6\,a + 2\,b \right) \\ 4 &= 3\,a \\ a &= \frac{4}{3} \end{align*}$

and

$\displaystyle \begin{align*} -3 &= 6\left( \frac{4}{3} \right) + 2\,b \\ -3 &= 8 + 2\,b \\ -11 &= 2\,b \\ b &= -\frac{11}{2} \end{align*}$

So the cubic is $\displaystyle \begin{align*} y = \frac{4}{3}\,x^3 - \frac{11}{2}\,x^2 - 3\,x + \frac{15}{2} \end{align*}$.
 
Mathematics news on Phys.org
Find the $\displaystyle \begin{align*} x \end{align*}$ co-ordinates, in terms of $\displaystyle \begin{align*} n \end{align*}$, of the stationary points of the curve with equation $\displaystyle \begin{align*} y = \left( 2\,x - 1 \right) ^n \left( x + 2 \right) \end{align*}$, where $\displaystyle \begin{align*} n \end{align*}$ is a natural number.

Stationary points occur where the derivative is 0, so

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \left( 2\,x - 1 \right) ^n \left( 1 \right) + 2\,n\,\left( 2\,x - 1 \right)^{n-1} \left( x + 2 \right) \\ 0 &= \left( 2\,x - 1 \right) ^{n - 1} \left[ \left( 2\,x - 1 \right) + 2\,n\,\left( x + 2 \right) \right] \\ 0 &= \left( 2\,x - 1 \right) ^{n - 1} \left( 2\,x - 1 + 2\,n\,x + 4\,n \right) \end{align*}$

So

$\displaystyle \begin{align*} \left( 2\,x - 1 \right) ^{n - 1} &= 0 \\ 2\,x - 1 &= 0 \\ 2\,x &= 1 \\ x &= \frac{1}{2} \end{align*}$

and

$\displaystyle \begin{align*} 2\,x - 1 + 2\,n\,x + 4\,n &= 0 \\ \left( 2 + 2\,n \right) x &= 1 - 4\,n \\ x &= \frac{1 - 4\,n }{2 + 2\,n} \end{align*}$
 
Find the co-ordinates of the stationary points of the curve with equation $\displaystyle \begin{align*} y = \frac{x}{x^2 + 1} \end{align*}$.

Stationary points occur where the derivative is 0, so

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1\left( x^2 + 1 \right) - x \left( 2\,x \right)}{\left( x^2 + 1 \right) ^2} \\ 0 &= \frac{x^2 + 1 - 2\,x^2}{\left( x^2 + 1 \right)^2} \\ 0 &= \frac{1 - x^2}{\left( x^2 + 1 \right) ^2} \\ 0 &= 1 - x^2 \\ x^2 &= 1 \\ x &= \pm 1 \end{align*}$

When $\displaystyle \begin{align*} x = -1 \end{align*}$

$\displaystyle \begin{align*} y &= \frac{-1}{\left( -1 \right) ^2 + 1 } \\ &= \frac{-1}{1 + 1} \\ &= -\frac{1}{2} \end{align*}$

and when $\displaystyle \begin{align*} x = 1 \end{align*}$

$\displaystyle \begin{align*} y &= \frac{1}{1^2 + 1} \\ &= \frac{1}{1 + 1} \\ &= \frac{1}{2} \end{align*}$

Thus the stationary points are $\displaystyle \begin{align*} \left( -1, -\frac{1}{2} \right) \end{align*}$ and $\displaystyle \begin{align*} \left( 1, \frac{1}{2} \right) \end{align*}$.
 
A particle moves in a straight line such that its position, $\displaystyle \begin{align*} x \end{align*}$ cm, relative to a point $\displaystyle \begin{align*} O \end{align*}$, at time $\displaystyle \begin{align*} t \end{align*}$ seconds is given by the equation $\displaystyle \begin{align*} x\left( t \right) = 8+ 2\,t - t^2 \end{align*}$. Find:

a) its initial position
b) its initial velocity
c) when and where the velocity is zero
d) its acceleration at time $\displaystyle \begin{align*} t \end{align*}$.

a) Initially $\displaystyle \begin{align*} t = 0 \end{align*}$ so

$\displaystyle \begin{align*} x \left( 0 \right) &= 8 + 2\left( 0 \right) - 0^2 \\ &= 8 \end{align*}$

b) The velocity is the derivative of position, so

$\displaystyle \begin{align*} v\left( t \right) &= 2 - 2\,t \\ v \left( 0 \right) &= 2 - 2 \left( 0 \right) \\ &= 2 \end{align*}$

c)
$\displaystyle \begin{align*} 0 &= 2 - 2\,t \\ 2\,t &= 2 \\ t &= 1 \\ \\ x\left( 1 \right) &= 8 + 2\left( 1 \right) - 1^2 \\ &= 8 + 2 - 1 \\ &= 9 \end{align*}$

d) Acceleration is the derivative of velocity, so

$\displaystyle \begin{align*} a\left( t \right) &= -2 \end{align*}$
 
A particle is moving in a straight line such that its position, $\displaystyle \begin{align*} x \end{align*}$ cm, relative to a point $\displaystyle \begin{align*} O \end{align*}$ at time $\displaystyle \begin{align*} t \end{align*}$ seconds, is given by $\displaystyle \begin{align*} x\left( t \right) = \sqrt{2\,t^2 + 2} \end{align*}$. Find the acceleration as a function of $\displaystyle \begin{align*} t \end{align*}$.

Acceleration is the second derivative of position, so

$\displaystyle \begin{align*} x\left( t \right) &= \left( 2\,t^2 + 2 \right) ^{\frac{1}{2}} \\ \\ v\left( t \right) &= 4\,t \left( \frac{1}{2} \right) \left( 2\,t^2 + 2 \right) ^{-\frac{1}{2}} \\ &= 2\,t \, \left( 2\,t^2 + 2 \right) ^{-\frac{1}{2}} \\ \\ a\left( t \right) &= 2\,\left( 2\,t^2+ 2 \right) ^{-\frac{1}{2}} + 2\,t \left( -\frac{1}{2} \right) \left( 2\,t^2 + 2 \right) ^{-\frac{3}{2}} \\ &= 2\,\left( 2\,t^2 + 2 \right) ^{-\frac{1}{2}} - t \,\left( 2\,t^2 + 2 \right) ^{-\frac{3}{2}} \end{align*}$

- - - Updated - - -

A manufacturing company has a daily output on day $\displaystyle \begin{align*} t \end{align*}$ of a production run given by $\displaystyle \begin{align*} y = 6000\,\left( 1 - \mathrm{e}^{-0.5\,t} \right) \end{align*}$, where the first day of the production run is $\displaystyle \begin{align*} t = 0 \end{align*}$. Find the instantaneous rate of change of output $\displaystyle \begin{align*} y \end{align*}$ with respect to $\displaystyle \begin{align*} t \end{align*}$ on the 10th day.

The 10th day is when $\displaystyle \begin{align*} t = 9 \end{align*}$.

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}t} &= 6000\,\left( -0.5\,\mathrm{e}^{-0.5\,t} \right) \\ &= -3000\,\mathrm{e}^{-0.5\,t} \\ &= -3000\,\mathrm{e}^{-0.5 \cdot 9} \\ &= -3000\,\mathrm{e}^{-4.5} \end{align*}$

- - - Updated - - -

The mass, $\displaystyle \begin{align*} m \end{align*}$ kg, of radioactive lead remaining in a sample $\displaystyle \begin{align*} t \end{align*}$ hours after observation began is given by $\displaystyle \begin{align*} m = 2\,\mathrm{e}^{-0.2\,t} \end{align*}$. Express the rate of decay as a function of $\displaystyle \begin{align*} m \end{align*}$.

$\displaystyle \begin{align*} \frac{\mathrm{d}m}{\mathrm{d}t} &= -0.2\cdot 2\,\mathrm{e}^{-0.2\,t} \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= -0.2\,m \end{align*}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
4
Views
11K
Replies
1
Views
11K
Replies
1
Views
10K
Replies
1
Views
11K
Replies
2
Views
10K