Jay's question at Yahoo Answers regarding a proof by mathematical induction

Click For Summary
SUMMARY

The discussion focuses on proving the formula for the sum of a geometric series using mathematical induction. The specific formula is given as $$\sum_{j=0}^n\left(4^j \right)=\frac{4^{n+1}-1}{3}$$. The proof begins by verifying the base case for n=1, confirming that both sides equal 5. The induction hypothesis is established, and the inductive step demonstrates that if the formula holds for n=k, it also holds for n=k+1, thus completing the proof.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with geometric series
  • Basic algebraic manipulation
  • Knowledge of exponential functions
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore geometric series and their applications in mathematics
  • Practice algebraic manipulation techniques for proofs
  • Learn about other proof techniques such as contradiction and contrapositive
USEFUL FOR

Students in mathematics, educators teaching proof techniques, and anyone interested in enhancing their understanding of mathematical induction and series summation.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Need help with math induction?


For all natural numbers n, the sum 1+4+4^(2) +4^(3) +. . .+4^(n) = (1/3) * (4^(n+1)−1).

Any help would be appreciated. Thanks!

I have posted a link there to this thread so the OP can see my work.
 
Mathematics news on Phys.org
Hello Jay,

We are given to prove by induction:

$$\sum_{j=0}^n\left(4^j \right)=\frac{4^{n+1}-1}{3}$$

First, let's verify the base case $P_1$ is true:

$$\sum_{j=0}^1\left(4^j \right)=\frac{4^{1+1}-1}{3}$$

$$4^0+4^1=\frac{4^2-1}{3}$$

$$1+4=\frac{15}{3}$$

$$5=5$$

The base case is true, so let's state the induction hypothesis $P_k$:

$$\sum_{j=0}^k\left(4^j \right)=\frac{4^{k+1}-1}{3}$$

As our inductive step, let's add $$4^{k+1}$$ to both sides:

$$\sum_{j=0}^k\left(4^j \right)+4^{k+1}=\frac{4^{k+1}-1}{3}+4^{k+1}$$

$$\sum_{j=0}^{k+1}\left(4^j \right)=\frac{4^{k+1}-1+3\cdot4^{k+1}}{3}$$

$$\sum_{j=0}^{k+1}\left(4^j \right)=\frac{4\cdot4^{k+1}-1}{3}$$

$$\sum_{j=0}^{k+1}\left(4^j \right)=\frac{4^{(k+1)+1}-1}{3}$$

We have derived $P_{k+1}$ from $P_k$, thereby completing the proof by induction.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K