I Karl Schwarzschild: Solving GR on the Eastern Front

  • I
  • Thread starter Thread starter BWV
  • Start date Start date
  • Tags Tags
    Gr Schwarzschild
BWV
Messages
1,573
Reaction score
1,927
Read the bio / fiction chapter on Karl Schwarzschild in Benjamin Labatut’s great Book, and curious on a little color on how he developed the solution - I had thought finding an exact solution in GR was just math chops, but actually any Lorentzian metric is an exact solution, so the difficulty was in finding a solution that reproduced the physics, but what physics would Swchwarzchild had in 1915 on the Eastern front - just the precession of Mercury, which was in the copy Einsteins GR paper he has?

FWIW, he was not directly in the trenches, he foolishly volunteered at age 40 to serve as an artillery specialist where he could employ abilities. He also was wasting away with Pemphigus, a nasty genetic skin disease that Ashkenazi Jews are susceptible to
 

Attachments

  • 1660503254308.jpeg
    1660503254308.jpeg
    39.8 KB · Views: 134
Physics news on Phys.org
BWV said:
what physics would Swchwarzchild had in 1915 on the Eastern front
He had Einstein's field equation; Einstein had sent him a preprint of his paper giving the final correct version of the field equation. He then looked for a solution that satisfied the assumptions of vacuum (zero stress-energy) and spherical symmetry, and found the solution that now bears his name. We now know that this is the unique solution for those conditions (this result is known as Birkhoff's Theorem and was proved, IIRC, in the early 1920s).

BWV said:
just the precession of Mercury, which was in the copy Einsteins GR paper he has?
Schwarzschild wasn't interested in solving the weak field limit; EInstein had already done that and showed that the precession of Mercury came out. He was interested in the most general possible solution for the conditions given (vacuum and spherical symmetry). (He also found a solution for the case of spherical symmetry and a perfect fluid with constant density, i.e., describing a highly idealized spherical planet or star.)
 
BWV said:
any Lorentzian metric is an exact solution
In the sense that you can compute its Einstein tensor and call that, adjusted by an appropriate constant factor, the "stress-energy tensor" of your solution, yes. But, as you note, this makes no guarantee whatever that the resulting solution will describe anything physically reasonable.

The more usual approach is to make some reasonable assumptions about things like symmetries of the spacetime (as Schwarzschild assumed spherical symmetry) and some general form for the stress-energy tensor (as Schwarzschild assumed vacuum, and then for his other solution he assumed a perfect fluid with constant density). That allows you to simplify the form of the metric using the symmetries, compute its Einstein tensor to give a set of differential equations for the metric components, and then use your assumption about the stress-energy tensor to determine the solution.
 
  • Informative
  • Like
Likes vanhees71 and BWV
Karl’s son Martin was an accomplished Astrophysicist, who fortunately fled Germany in the 30s and worked for US intelligence during the war, before landing at Princeton where he worked on stellar evolution, dying in 1997. No doubt some here knew him
 
PeterDonis said:
He had Einstein's field equation; Einstein had sent him a preprint of his paper giving the final correct version of the field equation. He then looked for a solution that satisfied the assumptions of vacuum (zero stress-energy) and spherical symmetry, and found the solution that now bears his name. We now know that this is the unique solution for those conditions (this result is known as Birkhoff's Theorem and was proved, IIRC, in the early 1920s).
Amazingly, he also gave a first solution for a "compact star" (non-vacuum solution, using the model of an incompressible fluid). Both papers appeared in the "Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 1916":

https://ui.adsabs.harvard.edu/abs/1916SPAW...189S/abstract
https://ui.adsabs.harvard.edu/abs/1916skpa.conf..424S/abstract
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top