I Karl Schwarzschild: Solving GR on the Eastern Front

  • Thread starter Thread starter BWV
  • Start date Start date
  • Tags Tags
    Gr Schwarzschild
Click For Summary
Karl Schwarzschild developed his solution to Einstein's field equations during World War I while serving as an artillery specialist, despite suffering from a severe skin disease. He focused on finding a solution that met the conditions of vacuum and spherical symmetry, leading to the unique Schwarzschild solution, which describes the gravitational field outside a spherical mass. This solution was significant as it addressed the precession of Mercury, a key aspect of general relativity that Einstein had previously established. Schwarzschild also contributed to the understanding of non-vacuum solutions, proposing a model for a compact star using an incompressible fluid. His work laid foundational concepts in general relativity, influencing future astrophysical research.
BWV
Messages
1,592
Reaction score
1,948
Read the bio / fiction chapter on Karl Schwarzschild in Benjamin Labatut’s great Book, and curious on a little color on how he developed the solution - I had thought finding an exact solution in GR was just math chops, but actually any Lorentzian metric is an exact solution, so the difficulty was in finding a solution that reproduced the physics, but what physics would Swchwarzchild had in 1915 on the Eastern front - just the precession of Mercury, which was in the copy Einsteins GR paper he has?

FWIW, he was not directly in the trenches, he foolishly volunteered at age 40 to serve as an artillery specialist where he could employ abilities. He also was wasting away with Pemphigus, a nasty genetic skin disease that Ashkenazi Jews are susceptible to
 

Attachments

  • 1660503254308.jpeg
    1660503254308.jpeg
    39.8 KB · Views: 137
Physics news on Phys.org
BWV said:
what physics would Swchwarzchild had in 1915 on the Eastern front
He had Einstein's field equation; Einstein had sent him a preprint of his paper giving the final correct version of the field equation. He then looked for a solution that satisfied the assumptions of vacuum (zero stress-energy) and spherical symmetry, and found the solution that now bears his name. We now know that this is the unique solution for those conditions (this result is known as Birkhoff's Theorem and was proved, IIRC, in the early 1920s).

BWV said:
just the precession of Mercury, which was in the copy Einsteins GR paper he has?
Schwarzschild wasn't interested in solving the weak field limit; EInstein had already done that and showed that the precession of Mercury came out. He was interested in the most general possible solution for the conditions given (vacuum and spherical symmetry). (He also found a solution for the case of spherical symmetry and a perfect fluid with constant density, i.e., describing a highly idealized spherical planet or star.)
 
BWV said:
any Lorentzian metric is an exact solution
In the sense that you can compute its Einstein tensor and call that, adjusted by an appropriate constant factor, the "stress-energy tensor" of your solution, yes. But, as you note, this makes no guarantee whatever that the resulting solution will describe anything physically reasonable.

The more usual approach is to make some reasonable assumptions about things like symmetries of the spacetime (as Schwarzschild assumed spherical symmetry) and some general form for the stress-energy tensor (as Schwarzschild assumed vacuum, and then for his other solution he assumed a perfect fluid with constant density). That allows you to simplify the form of the metric using the symmetries, compute its Einstein tensor to give a set of differential equations for the metric components, and then use your assumption about the stress-energy tensor to determine the solution.
 
  • Informative
  • Like
Likes vanhees71 and BWV
Karl’s son Martin was an accomplished Astrophysicist, who fortunately fled Germany in the 30s and worked for US intelligence during the war, before landing at Princeton where he worked on stellar evolution, dying in 1997. No doubt some here knew him
 
PeterDonis said:
He had Einstein's field equation; Einstein had sent him a preprint of his paper giving the final correct version of the field equation. He then looked for a solution that satisfied the assumptions of vacuum (zero stress-energy) and spherical symmetry, and found the solution that now bears his name. We now know that this is the unique solution for those conditions (this result is known as Birkhoff's Theorem and was proved, IIRC, in the early 1920s).
Amazingly, he also gave a first solution for a "compact star" (non-vacuum solution, using the model of an incompressible fluid). Both papers appeared in the "Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 1916":

https://ui.adsabs.harvard.edu/abs/1916SPAW...189S/abstract
https://ui.adsabs.harvard.edu/abs/1916skpa.conf..424S/abstract
 
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...