MHB Kartik's Diff. of Cont. Fraction Q @ Yahoo Answers

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Differentiation : Calculus : Thanks :)?

http://www.flickr.com/photos/97838434@N06/9241146888/sizes/c/in/photostream/

Help needed with "Q.18) " on the above link. Thanks in advance :)

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Kartik,

We are given:

$$y=\cfrac{x}{a+\cfrac{x}{b+\cfrac{x}{a+\cfrac{x}{b+ \cdots}}}}$$

and asked to find $$\frac{dy}{dx}$$ in terms of $y$ only.

We may choose to write:

$$y=\cfrac{x}{a+\cfrac{x}{b+y}}$$

Multiplying through by $$\frac{1}{b+y}$$ we obtain:

$$\frac{y}{b+y}=\frac{x}{a(b+y)+x}$$

Inverting both sides, then subtracting through by 1, we have:

$$\frac{b}{y}=\frac{a(b+y)}{x}$$

Solving for $x$, we obtain:

$$x=ay+\frac{a}{b}y^2$$

Differentiating with respect to $y$, we find:

$$\frac{dx}{dy}=a+\frac{2a}{b}y=\frac{a(b+2y)}{b}$$

Hence:

$$\frac{dy}{dx}=\frac{b}{a(b+2y)}$$
 
MarkFL said:
... inverting both sides, then subtracting through by 1, we have...

$$\frac{b}{y}=\frac{a(b+y)}{x}$$

Solving for $x$, we obtain...

If You want to obtain $\displaystyle \frac{d y}{d x}$ in 'standard form' [i.e. as function of the only x...] You can solve respect to y obtaining...$\displaystyle y= - \frac{b}{2} \pm \sqrt{\frac{b^{2}}{4} + \frac{b}{a} x}\ (1)$

... and then differentiate (1). Note from (1) that y(x) is a multivalue function...

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top