MHB Kavina's question at Yahoo Answers regarding an initial value problem

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus question on differential equations?

Water in a barrel (upright cylinder) is leaking out at a rate proportional to the square root of the depth of the water. If the water level was 29 cm 3 minutes ago, and is at 25 cm now, how many more minutes (from now) will it take for the barrel to be empty? Please help :)

Here is a link to the question:

Calculus question on differential equations? - Yahoo! Answers

I have posted a link there to this topic so the OP may find my response.
 
Mathematics news on Phys.org
Hello Kavina,

Let $V(t)$ be the volume in $\text{cm}^3$ of water in the cylindrical barrel at time $t$ in minutes, and $h$ be the depth in $\text{cm}$ of the water in the barrel.

We are given:

$\displaystyle \frac{dV}{dt}=-k\sqrt{h}$ where $0<k$ in the constant of proportionality.

The formula for the volume of a cylinder is:

$\displaystyle V=\pi r^2h$

Differentiating this with respect to time (and observing that $\pi r^2$ will remain constant) we find:

$\displaystyle \frac{dV}{dt}=\pi r^2\frac{dh}{dt}$

Now, equating the two expressions for $\displaystyle \frac{dV}{dt}$ we have:

$\displaystyle \pi r^2\frac{dh}{dt}=-k\sqrt{h}$

$\displaystyle \frac{dh}{dt}=-\frac{k}{\pi r^2}\sqrt{h}$

Now, we may redefine the constant of proportionality and write the IVP:

$\displaystyle \frac{dh}{dt}=-k\sqrt{h}$ where $h(0)=29,\,h(3)=25$.

The ODE associated with the IVP is separable:

$\displaystyle h^{-\frac{1}{2}}\,dh=-k\,dt$

Integrate:

$\displaystyle \int h^{-\frac{1}{2}}\,dh=-k\int\,dt$

$\displaystyle 2h^{\frac{1}{2}}=-kt+C$

Use initial conditions to find parameter $C$

$\displaystyle 2(29)^{\frac{1}{2}}=-k(0)+C$

$\displaystyle C=2\sqrt{29}$

and so we have:

$\displaystyle 2h^{\frac{1}{2}}=-kt+2\sqrt{29}$

Now, use other given point to determine the constant of proportionality $k$:

$\displaystyle 2(25)^{\frac{1}{2}}=-k(3)+2\sqrt{29}$

$\displaystyle k=\frac{2(\sqrt{29}-5)}{3}$

Hence, we may write:

$\displaystyle t=\frac{3(\sqrt{29}-\sqrt{h})}{\sqrt{29}-5}$

Now, to find when the barrel will be empty, we may let $h=0$ and we find:

$\displaystyle t(0)=\frac{3\sqrt{29}}{\sqrt{29}-5}$

Since "now" is given to be $t=3$ we must subtract 3 from this to find the answer to the question:

$\displaystyle \frac{3\sqrt{29}}{\sqrt{29}-5}-3=\frac{3\sqrt{29}-3(\sqrt{29}-5)}{\sqrt{29}-5}=\frac{15}{\sqrt{29}-5}$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top