MHB KRISTINE's question at Yahoo Answers (Set inclusion)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
To prove that A is a subset of C given that A is a subset of the union of B and C, and that the intersection of A and B is empty, one can use a contradiction approach. If an element x belongs to A, it must belong to either B or C. However, if x were in B, it would contradict the condition that A and B have no elements in common. Therefore, it must be true that x is in C, confirming that A is indeed a subset of C. This logical deduction effectively demonstrates the relationship between the sets.
Mathematics news on Phys.org
Hello KRISTINE,

By hypothesis, $(i)\;A\subset B\cup C\quad(ii)\;A\cap B=\emptyset$

If $x\in A$, then (by $(i)$) $x\in B$ or $x\in C$.

Suppose $x\in B$. Then, (by $(ii)$) $x\not \in A$ which contradicts the hypothesis $x\in A$. So, necessarily $x\in C$. We have proven $A\subset C$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
5K