In classical mechanics the Lagrangian depends only on time, position, and velocity. It is not allowed to depend on any higher order derivatives of position. Does this principle remain true for Lagrangians in non-relativistic quantum mechanics? What about relativistic quantum field theory?(adsbygoogle = window.adsbygoogle || []).push({});

Any help would be greatly appreciated.

Thank You in Advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Lagrangians in Quantum Mechanics

**Physics Forums | Science Articles, Homework Help, Discussion**