Lancaster&Blundell "QFT Gifted Amateur" Wick theorem on Fermion Ground State

pines-demon
Gold Member
2024 Award
Messages
929
Reaction score
778
Homework Statement
Use Wick's theorem to simplify [this fermionic operation]
Relevant Equations
##\langle 0|c^\dagger_{p_1-q}c^\dagger_{p_2+q}c_{p_2}c_{p_1}|0\rangle##
In Lancaster&Blundell QFT for the Gifted Amateur, Chaper 18, the authors introduce Wick's theorem. I have already seen it Fetter&Walecka and in here, but my problem with the theorem is that it is usually announced for interaction picture operators with time-dependences. Nevertheless in the exercises they ask us to use Wick's theorem to rewrite different chains of operators that are not time-dependent. This problem (18.5) struck me specfically because it is completely ambiguous, not only one has to understand that ##|0\rangle## is the ground state (GS) and not the full vacuum, but also how does Wick theorem work here? I mean the operators are already normal ordered...

From previous problems I figured out how to use the Wick theorem for time independent operators. One can use that version of the theorem naively and say that
$$\langle 0|c^\dagger_{p_1-q}c^\dagger_{p_2+q}c_{p_2}c_{p_1}|0\rangle=\text{all contracted pairs}$$
Which provides the right result but it is fishy because this operation contains normal orderings like the original one ##c^\dagger_{p_1-q}c^\dagger_{p_2+q}c_{p_2}c_{p_1}## that are not zero by definition of GS. So why does this work? Does the normal ordering has to be redefined here?

A more natural way I have seen this before is to divide the fermion operators into particle-antiparticle operators so that the ground state works like a true vacuum but it seems that there is no need under this more-seemingly-naive use of Wick's theorem.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Replies
5
Views
5K
Replies
3
Views
3K
Replies
6
Views
2K
Back
Top