Lancaster&Blundell "QFT Gifted Amateur" Wick theorem on Fermion Ground State

pines-demon
Gold Member
2024 Award
Messages
964
Reaction score
791
Homework Statement
Use Wick's theorem to simplify [this fermionic operation]
Relevant Equations
##\langle 0|c^\dagger_{p_1-q}c^\dagger_{p_2+q}c_{p_2}c_{p_1}|0\rangle##
In Lancaster&Blundell QFT for the Gifted Amateur, Chaper 18, the authors introduce Wick's theorem. I have already seen it Fetter&Walecka and in here, but my problem with the theorem is that it is usually announced for interaction picture operators with time-dependences. Nevertheless in the exercises they ask us to use Wick's theorem to rewrite different chains of operators that are not time-dependent. This problem (18.5) struck me specfically because it is completely ambiguous, not only one has to understand that ##|0\rangle## is the ground state (GS) and not the full vacuum, but also how does Wick theorem work here? I mean the operators are already normal ordered...

From previous problems I figured out how to use the Wick theorem for time independent operators. One can use that version of the theorem naively and say that
$$\langle 0|c^\dagger_{p_1-q}c^\dagger_{p_2+q}c_{p_2}c_{p_1}|0\rangle=\text{all contracted pairs}$$
Which provides the right result but it is fishy because this operation contains normal orderings like the original one ##c^\dagger_{p_1-q}c^\dagger_{p_2+q}c_{p_2}c_{p_1}## that are not zero by definition of GS. So why does this work? Does the normal ordering has to be redefined here?

A more natural way I have seen this before is to divide the fermion operators into particle-antiparticle operators so that the ground state works like a true vacuum but it seems that there is no need under this more-seemingly-naive use of Wick's theorem.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...

Similar threads

Replies
5
Views
5K
Replies
3
Views
3K
Replies
6
Views
2K
Back
Top