MHB Laplace Transform with two steps

Click For Summary
To find U(s) from the given transfer function H(s) and the input u(t), the Laplace transform of the step function needs to be applied correctly. The input u(t) consists of two step functions, which requires considering the shifts in the Laplace transform. The correct approach results in U(s) being expressed as U(s) = \frac{1}{s} + e^{-s}\frac{1}{s}. This leads to Y(s) being calculated as Y(s) = \frac{1}{(s + 1)(1 + e^{-s})}. The discussion emphasizes the importance of accurately applying the Laplace transform to piecewise functions.
Dustinsfl
Messages
2,217
Reaction score
5
Given the transfer function
\[
H(s) = \frac{Y(s)}{U(s)} = \frac{1}{s + 1}
\]
and
\[
u(t) = 1(t) + 1(t - 1).
\]
How do I find U(s)? I know I take the Laplace transform of u(t) but with the two step functions how can this be done?

The Laplace transform of the step function is \(\frac{1}{s}\) for \(t > a\) where \(a\) is the shift. If I take the Laplace of \(u(t)\), do just get
\[
\frac{2}{s}\mbox{?}
\]
That seems strange though since \(\frac{1}{s}\) is for \(t > 0\) and the other \(\frac{1}{s}\) is for \(t > 1\).

The end goal is to find \(y(t)\).
 
Physics news on Phys.org
dwsmith said:
Given the transfer function
\[
H(s) = \frac{Y(s)}{U(s)} = \frac{1}{s + 1}
\]
and
\[
u(t) = 1(t) + 1(t - 1).
\]
How do I find U(s)? I know I take the Laplace transform of u(t) but with the two step functions how can this be done?

The Laplace transform of the step function is \(\frac{1}{s}\) for \(t > a\) where \(a\) is the shift. If I take the Laplace of \(u(t)\), do just get
\[
\frac{2}{s}\mbox{?}
\]
That seems strange though since \(\frac{1}{s}\) is for \(t > 0\) and the other \(\frac{1}{s}\) is for \(t > 1\).

The end goal is to find \(y(t)\).

If $\displaystyle g(t) = f(t - a)\ \mathcal{U}\ (t-a)$ and $\displaystyle \mathcal{L}\ \{f(t)\} = F(s)$ then $\displaystyle \mathcal {L}\ \{ g(t)\} = e^{- a\ s}\ F(s)$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
If $\displaystyle g(t) = f(t - a)\ \mathcal{U}\ (t-a)$ and $\displaystyle \mathcal{L}\ \{f(t)\} = F(s)$ then $\displaystyle \mathcal {L}\ \{ g(t)\} = e^{- a\ s}\ F(s)$...

Kind regards

$\chi$ $\sigma$

So \(U(s) = \frac{1}{s} + e^{-s}\frac{1}{s}\)?

I don't think U(s) is correct. I then would have
\[
Y(s) = \frac{s}{(s + 1)(1 + e^{-s})}.
\]
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K