A Learning DFT: Inhomogeneous Electron Gas (Hohenberg) Question

Click For Summary
The discussion focuses on Hohenberg's paper "Inhomogeneous Electron Gas," which is foundational for Density Functional Theory (DFT). A key point of confusion is the form of the Hamiltonian, particularly the kinetic energy term, which appears as an expectation value but deviates from the expected form of ##\int \psi^* \nabla^2 \psi##. The presence of the factor ##\frac{1}{2}## suggests a relationship to the kinetic energy term ##\frac{\mathbf{p^2}}{2m}##, raising questions about the use of the gradient operator with the wavefunctions. Additionally, the discussion examines the external potential term, questioning if it represents an expectation value integrated over space. The integral of the divergence term is noted to be zero, as it corresponds to a surface integral at infinity where the wavefunction vanishes.
yosty222
Messages
2
Reaction score
0
TL;DR
Where does the kinetic energy term of the hamiltonian come from? Is it an expectation value of the kinetic energy?
I'm reading through Hohenberg's seminal paper titled: "Inhomogeneous Electron Gas" that help lay the foundation for what we know of as Density Functional Theory (DFT) by proving the existence of a universal functional that exactly matches the ground-state energy of a system with a given interaction potential v(r). I'm working through this paper and I'm a bit confused on the exact form of the Hamiltonian he builds:
1678074328045.png


The form of kinetic energy looks like an expectation value, but not quite as I'd expect the expectation value of kinetic energy to look like ## \int \psi^* \nabla^2 \psi ##. The factor of ##\frac{1}{2}## out front makes me think it's coming from a ##\frac{\mathbf{p^2}}{2m}## term (with m = 1 in these units), but why does a ##\nabla## operator get attached to each ##\psi^*## and ##\psi##?

Similarly, for the form of V (equation (3) above), is this expressing the contribution of the external potential ##v(\mathbf{r})## as an expectation value of the external potential over some volume d##\mathbf{r}## then integrating over all space?
 
Physics news on Phys.org
##\psi^*\nabla^2\psi=\nabla\cdot(\psi^*\nabla\psi)-\nabla\psi^*\cdot\nabla\psi##
The integral of ##\nabla\cdot(\psi^*\nabla\psi)## over all space will be zero, since it's equivalent to integrating over a surface at infinity, and the wavefunction and its derivative go to zero as ##r\to\infty##.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...