A Learning DFT: Inhomogeneous Electron Gas (Hohenberg) Question

yosty222
Messages
2
Reaction score
0
TL;DR Summary
Where does the kinetic energy term of the hamiltonian come from? Is it an expectation value of the kinetic energy?
I'm reading through Hohenberg's seminal paper titled: "Inhomogeneous Electron Gas" that help lay the foundation for what we know of as Density Functional Theory (DFT) by proving the existence of a universal functional that exactly matches the ground-state energy of a system with a given interaction potential v(r). I'm working through this paper and I'm a bit confused on the exact form of the Hamiltonian he builds:
1678074328045.png


The form of kinetic energy looks like an expectation value, but not quite as I'd expect the expectation value of kinetic energy to look like ## \int \psi^* \nabla^2 \psi ##. The factor of ##\frac{1}{2}## out front makes me think it's coming from a ##\frac{\mathbf{p^2}}{2m}## term (with m = 1 in these units), but why does a ##\nabla## operator get attached to each ##\psi^*## and ##\psi##?

Similarly, for the form of V (equation (3) above), is this expressing the contribution of the external potential ##v(\mathbf{r})## as an expectation value of the external potential over some volume d##\mathbf{r}## then integrating over all space?
 
Physics news on Phys.org
##\psi^*\nabla^2\psi=\nabla\cdot(\psi^*\nabla\psi)-\nabla\psi^*\cdot\nabla\psi##
The integral of ##\nabla\cdot(\psi^*\nabla\psi)## over all space will be zero, since it's equivalent to integrating over a surface at infinity, and the wavefunction and its derivative go to zero as ##r\to\infty##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top