MHB Lebesgue Integrable Functions on Measurable Sets

Click For Summary
The discussion introduces a new Problem of the Week (POTW) aimed at engaging advanced graduate students in mathematical problem-solving. Participants are invited to solve a specific problem related to Lebesgue integrable functions, focusing on the relationship between the integrals of a sequence of measurable functions and their limits. The problem emphasizes the conditions under which the integrals of the limit inferior and limit superior of the sequence can be compared. Despite the invitation for participation, no responses or attempts to solve the problem were made by the members. The thread concludes with the poster sharing their own solution to the problem.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Hello everyone! Welcome to the inaugural POTW for Graduate Students. My purpose for setting this up is to get some of our more advanced members to participate in our POTWs (I didn't want them to feel like they were left out or anything like that (Smile)).

As with the POTWs for the Secondary/High School and University students, Jameson and I will post a problem each Monday around 12:00 AM Eastern Standard Time (EST), and you'll have till Saturday at 11:59 PM EST to submit your solutions. With that said, let's get this started! (Smile)

-----

Problem: Let $g$ be a Lebesgue integrable function on a measurable set $E\subset\mathbb{R}$ and suppose that $\{f_n\}$ is a sequence of measurable functions such that $|f_n(x)|\leq g(x)$ $m$-a.e. on $E$. Show that

\[\int_E \liminf_{n\to\infty}f_n\,dm \leq \liminf_{n\to\infty}\int_E f_n\,dm \leq \limsup_{n\to\infty}\int_E f_n\,dm \leq \int_E \limsup_{n\to\infty}f_n\,dm.\]

-----

 
Physics news on Phys.org
No one tried this problem. :-/Here's my solution.
Proof: Let $g$ be an integrable function, and let $\{f_n\}$ be a sequence of measurable functions with $|f_n|\leq g$ $m$-a.e. on $E$. Then $\{f_n+g\}$ is a sequence of nonnegative functions on $E$. Thus, by Fatou's Lemma, we have\[\int_E \liminf_{n\to\infty} f_n\,dm + \int_E g\,dm \leq \int_E\liminf_{n\to\infty}(f_n+g)\,dm \leq \liminf_{n\to\infty}\int_E (f_n+g)\,dm \leq \liminf_{n\to\infty} \int_E f_n\,dm + \int_E g\,dm.\]Thus, $\displaystyle\int_E\liminf_{n\to\infty} f_n\,dm \leq \liminf_{n\to\infty}\int_E f_n\,dm$.Similarly, $\{g-f_n\}$ is a sequence of nonnegative measurable functions on $E$. Therefore, \[\int_E g\,dm + \int_E\liminf_{n\to\infty}(-f_n)\,dm \leq \int_E\liminf_{n\to\infty}(g-f_n)\,dm \leq \liminf_{n\to\infty}\int_E(g-f_n)\,dm \leq \int_E g\,dm + \liminf_{n\to\infty}\int_E(-f_n)\,dm.\]Recalling that $\displaystyle \liminf_{n\to\infty}(-f_n) = -\limsup_{n\to\infty} f_n$, we see that $\displaystyle\limsup_{n\to\infty}\int_E f_n\,dm\leq \int_E \limsup_{n\to\infty} f_n\,dm$. We also have (by "definition" of liminf & limsup) that $\displaystyle \liminf_{n\to\infty}\int_E f_n\,dm \leq \limsup_{n\to\infty}\int_E f_n\,dm$. Therefore, we see that\[\int_E \liminf_{n\to\infty}f_n\,dm\leq \liminf_{n\to\infty} \int_E f_n\,dm \leq \limsup_{n\to\infty}\int_E f_n\,dm \leq \int_E \limsup_{n\to\infty} f_n\,dm\]and this completes the proof. Q.E.D.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
Replies
1
Views
3K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K