Lebesgue Integrable Functions on Measurable Sets

Click For Summary
SUMMARY

The discussion centers on Lebesgue integrable functions and their properties on measurable sets. It presents a problem involving a Lebesgue integrable function \( g \) on a measurable set \( E \subset \mathbb{R} \) and a sequence of measurable functions \( \{f_n\} \) that are bounded by \( g \) almost everywhere. The established inequality demonstrates the relationship between the limit inferior and limit superior of the integrals of \( f_n \) and the integrals of their limits. This is crucial for understanding convergence in the context of Lebesgue integration.

PREREQUISITES
  • Understanding of Lebesgue integration and measurable functions.
  • Familiarity with the concepts of limit inferior and limit superior.
  • Knowledge of measure theory, particularly the properties of measurable sets.
  • Basic proficiency in real analysis, specifically sequences of functions.
NEXT STEPS
  • Study the Dominated Convergence Theorem in Lebesgue integration.
  • Explore the properties of measurable functions in detail.
  • Learn about convergence theorems related to integrals, such as Fatou's Lemma.
  • Investigate applications of Lebesgue integrable functions in probability theory.
USEFUL FOR

Graduate students in mathematics, particularly those specializing in real analysis and measure theory, as well as researchers interested in the properties of Lebesgue integrable functions and their applications.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Hello everyone! Welcome to the inaugural POTW for Graduate Students. My purpose for setting this up is to get some of our more advanced members to participate in our POTWs (I didn't want them to feel like they were left out or anything like that (Smile)).

As with the POTWs for the Secondary/High School and University students, Jameson and I will post a problem each Monday around 12:00 AM Eastern Standard Time (EST), and you'll have till Saturday at 11:59 PM EST to submit your solutions. With that said, let's get this started! (Smile)

-----

Problem: Let $g$ be a Lebesgue integrable function on a measurable set $E\subset\mathbb{R}$ and suppose that $\{f_n\}$ is a sequence of measurable functions such that $|f_n(x)|\leq g(x)$ $m$-a.e. on $E$. Show that

\[\int_E \liminf_{n\to\infty}f_n\,dm \leq \liminf_{n\to\infty}\int_E f_n\,dm \leq \limsup_{n\to\infty}\int_E f_n\,dm \leq \int_E \limsup_{n\to\infty}f_n\,dm.\]

-----

 
Physics news on Phys.org
No one tried this problem. :-/Here's my solution.
Proof: Let $g$ be an integrable function, and let $\{f_n\}$ be a sequence of measurable functions with $|f_n|\leq g$ $m$-a.e. on $E$. Then $\{f_n+g\}$ is a sequence of nonnegative functions on $E$. Thus, by Fatou's Lemma, we have\[\int_E \liminf_{n\to\infty} f_n\,dm + \int_E g\,dm \leq \int_E\liminf_{n\to\infty}(f_n+g)\,dm \leq \liminf_{n\to\infty}\int_E (f_n+g)\,dm \leq \liminf_{n\to\infty} \int_E f_n\,dm + \int_E g\,dm.\]Thus, $\displaystyle\int_E\liminf_{n\to\infty} f_n\,dm \leq \liminf_{n\to\infty}\int_E f_n\,dm$.Similarly, $\{g-f_n\}$ is a sequence of nonnegative measurable functions on $E$. Therefore, \[\int_E g\,dm + \int_E\liminf_{n\to\infty}(-f_n)\,dm \leq \int_E\liminf_{n\to\infty}(g-f_n)\,dm \leq \liminf_{n\to\infty}\int_E(g-f_n)\,dm \leq \int_E g\,dm + \liminf_{n\to\infty}\int_E(-f_n)\,dm.\]Recalling that $\displaystyle \liminf_{n\to\infty}(-f_n) = -\limsup_{n\to\infty} f_n$, we see that $\displaystyle\limsup_{n\to\infty}\int_E f_n\,dm\leq \int_E \limsup_{n\to\infty} f_n\,dm$. We also have (by "definition" of liminf & limsup) that $\displaystyle \liminf_{n\to\infty}\int_E f_n\,dm \leq \limsup_{n\to\infty}\int_E f_n\,dm$. Therefore, we see that\[\int_E \liminf_{n\to\infty}f_n\,dm\leq \liminf_{n\to\infty} \int_E f_n\,dm \leq \limsup_{n\to\infty}\int_E f_n\,dm \leq \int_E \limsup_{n\to\infty} f_n\,dm\]and this completes the proof. Q.E.D.
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
1K