MHB Liapunov function (扁頭科學's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Function
AI Thread Summary
A suitable Lyapunov function of the form ax^2 + cy^2 can be constructed to analyze the stability of the critical point at the origin for the given differential equations. By evaluating the function with a = c = 1, the derivative L_v(f)(x,y) results in a negative expression, indicating that the function is a strict Lyapunov function. This confirms that the origin is asymptotically stable. The analysis shows that the chosen Lyapunov function effectively demonstrates the stability of the system. Therefore, the critical point at the origin is proven to be asymptotically stable.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Construct a suitable Liapunov function of the form ax^2+cy^2,
where a and c are to be determined. Then show that the critical
point at the origin is of the indicated type.
1. dx/dt = -x^3+xy^2, dy/dt = -2x^2y-y^3; asymptotically stable

Here is a link to the question:

Differential equation (Liapunov function)? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello 扁頭科學,

If $f(x,y)=ax^2+cy^2$, then: $$L_v(f)(x,y)=\nabla f(x,y)\cdot (v_1,v_2)=(2ax,2cy)\cdot (-x^3+xy^2,-2x^2y-y^3)=\\-2ax^4+2ax^2y^2-4cx^2y^2-2cy^4$$ If $a=c=1$, we get $L_v(f)(x,y)=-2(x^4+x^2y^2+y^4)<0$ for all $(x,y)\ne (0,0)$. This means that $f$ is a Strict Lyapunov Function at $(0,0).$ As a consequence, $(0,0)$ is asymptotically stable.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top