Battlemage!
- 292
- 44
Homework Statement
\lim_{n\rightarrow ∞}\frac{n^n}{n!}
Homework Equations
n! = (1)⋅(2)⋅(3)⋅...⋅(n-1)⋅n
The Attempt at a Solution
\lim_{n\rightarrow ∞}\frac{n^n}{n!}
\lim_{n\rightarrow ∞}\frac{n^n}{(1)⋅(2)⋅...⋅(n-1)⋅n}
I then factor n out of the denominator n times, or rather, nn, leaving:
\lim_{n\rightarrow ∞}\frac{n^n}{n^n⋅(\frac{1}{n})⋅(\frac{2}{n})⋅...⋅(1-\frac{1}{n})⋅(1)}
\lim_{n\rightarrow ∞}\frac{1}{(\frac{1}{n})⋅(\frac{2}{n})⋅...⋅(1-\frac{1}{n})⋅(1)}
which is:
\frac{1}{0⋅0⋅...⋅(1-0)} = \frac{1}{0}=∞This is the result Wolfram gives, but I can't get the step by step since I don't have Pro.
http://www.wolframalpha.com/widgets/view.jsp?id=7c220a2091c26a7f5e9f1cfb099511e3Is this acceptable, or if not is there an alternative way to do this?