Limit of (n)^(1/n)/n as n approaches infinity

  • Context: MHB 
  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary

Discussion Overview

The discussion centers around evaluating the limit of the expression \(\frac{(n!)^{1/n}}{n}\) as \(n\) approaches infinity. The scope includes mathematical reasoning and potential methods for solving the limit, including hints for those who prefer not to use Stirling's approximation.

Discussion Character

  • Mathematical reasoning, Exploratory

Main Points Raised

  • Post 1 and Post 2 both present the same limit for evaluation, indicating a focus on the mathematical problem.
  • Post 3 acknowledges a solution provided by a participant named Bacterius and offers hints for an alternative approach without using Stirling's approximation.
  • Post 4 introduces a personal method for tackling the limit, though the details of this method are not provided in the excerpt.
  • Post 5 expresses appreciation for another participant's solution, indicating a collaborative atmosphere in the discussion.

Areas of Agreement / Disagreement

There is no explicit consensus or disagreement noted in the posts, but multiple approaches and methods are being explored, suggesting a variety of perspectives on the problem.

Contextual Notes

The discussion does not provide specific details on the methods or assumptions involved in the proposed solutions, leaving some aspects of the mathematical reasoning unresolved.

Dethrone
Messages
716
Reaction score
0
Determine $$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}$$
 
Physics news on Phys.org
Rido12 said:
Determine $$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}$$

By the continuity of the natural logarithm and using Stirling's approximation, we find that:
$$\ln \left [ \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} \right ] = \lim_{n \to \infty} \ln \frac{(n!)^{\frac{1}{n}}}{n} = \lim_{n \to \infty} \left [ \frac{\ln{n!}}{n} - \ln{n} \right ] = \lim_{n \to \infty} \left [ \left ( \ln{n} + O \left ( \frac{\ln{n}}{n} \right ) - 1 \right ) - \ln{n} \right ] = -1$$
Therefore it follows that:
$$\lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} = e^{-1} = \frac{1}{e}$$
 
Excellent solution Bacterius! Thanks for participating. :D

For anyone who wants to tackle this without Stirling's approximation, I have a few hints:

Use the fact that, assuming $f$ is non-negative and increasing:
$$\sum_{k=1}^{n-1}f(k)\le\int_1^nf(x) \,dx\le\sum_{k=1}^{n}f(k)$$

and apply it to $\ln(x)$ to get $en^ne^{-n}<n!<en^{n+1}e^{-n}$.
 
Here is my method:

If $a_n = \frac{(n!)^{1/n}}{n}$, then

$$a_n = \sqrt[n]{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\cdots \left(1 - \frac{n-1}{n}\right)} = \exp\left\{\frac{1}{n}\sum_{k = 0}^{n-1}\log\left(1 - \frac{k}{n}\right)\right\},$$

which converges to

$$\exp\left\{\int_0^1 \log(1 - x)\, dx\right\} = \exp\left\{\int_0^1\log x\, dx\right\} = \exp(-1) = \frac{1}{e}.$$
 
Hi Euge! Very interesting solution, excellent job! (Cool)

$$\sum_{k}^{n-1}\ln k \le\int_{1}^{n} \ln x\,dx \le \sum_{k=1}^{n}\ln k$$
$$\implies \ln(n-1)! \le n \ln n-n+1 \le \ln n!$$

On the left hand side, it can be shown that $\ln(n-1)! \le n\ln n -n+1 \implies n! \le n^{n+1}e^{-n}e$ and on the right hand side, $n \ln n-n+1 \le \ln n! \implies n^ne^{-n}\le n!$.

$$n^ne^{-n}e \le n! \le n^{n+1}e^{-n}e$$$$\implies\frac{e^{1/n}}{e}\le \frac{(n!)^{1/n}}{n} \le \frac{e^{1/n}n^{1/n}}{e}$$

Furthermore, $\lim_{{n}\to{\infty}}a^{1/n}=1$ and $\lim_{{n}\to{\infty}}n^{1/n}=1$, so by the squeeze theorem,
$$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}=\frac{1}{e}$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K