Limit of (n)^(1/n)/n as n approaches infinity

  • Context: MHB 
  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The limit of \(\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}\) is a key topic in mathematical analysis. Participants in the discussion highlighted the use of Stirling's approximation as a method to solve this limit. The conversation included various approaches to the problem, with specific acknowledgment of the solution provided by a user named Bacterius. The discussion emphasizes the importance of factorial growth rates in understanding limits involving sequences.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with factorial notation and growth rates
  • Knowledge of Stirling's approximation
  • Basic concepts of mathematical analysis
NEXT STEPS
  • Study Stirling's approximation in detail
  • Explore the properties of factorial functions
  • Learn about asymptotic analysis techniques
  • Investigate other limits involving sequences and series
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in advanced limit evaluation techniques.

Dethrone
Messages
716
Reaction score
0
Determine $$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}$$
 
Physics news on Phys.org
Rido12 said:
Determine $$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}$$

By the continuity of the natural logarithm and using Stirling's approximation, we find that:
$$\ln \left [ \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} \right ] = \lim_{n \to \infty} \ln \frac{(n!)^{\frac{1}{n}}}{n} = \lim_{n \to \infty} \left [ \frac{\ln{n!}}{n} - \ln{n} \right ] = \lim_{n \to \infty} \left [ \left ( \ln{n} + O \left ( \frac{\ln{n}}{n} \right ) - 1 \right ) - \ln{n} \right ] = -1$$
Therefore it follows that:
$$\lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} = e^{-1} = \frac{1}{e}$$
 
Excellent solution Bacterius! Thanks for participating. :D

For anyone who wants to tackle this without Stirling's approximation, I have a few hints:

Use the fact that, assuming $f$ is non-negative and increasing:
$$\sum_{k=1}^{n-1}f(k)\le\int_1^nf(x) \,dx\le\sum_{k=1}^{n}f(k)$$

and apply it to $\ln(x)$ to get $en^ne^{-n}<n!<en^{n+1}e^{-n}$.
 
Here is my method:

If $a_n = \frac{(n!)^{1/n}}{n}$, then

$$a_n = \sqrt[n]{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\cdots \left(1 - \frac{n-1}{n}\right)} = \exp\left\{\frac{1}{n}\sum_{k = 0}^{n-1}\log\left(1 - \frac{k}{n}\right)\right\},$$

which converges to

$$\exp\left\{\int_0^1 \log(1 - x)\, dx\right\} = \exp\left\{\int_0^1\log x\, dx\right\} = \exp(-1) = \frac{1}{e}.$$
 
Hi Euge! Very interesting solution, excellent job! (Cool)

$$\sum_{k}^{n-1}\ln k \le\int_{1}^{n} \ln x\,dx \le \sum_{k=1}^{n}\ln k$$
$$\implies \ln(n-1)! \le n \ln n-n+1 \le \ln n!$$

On the left hand side, it can be shown that $\ln(n-1)! \le n\ln n -n+1 \implies n! \le n^{n+1}e^{-n}e$ and on the right hand side, $n \ln n-n+1 \le \ln n! \implies n^ne^{-n}\le n!$.

$$n^ne^{-n}e \le n! \le n^{n+1}e^{-n}e$$$$\implies\frac{e^{1/n}}{e}\le \frac{(n!)^{1/n}}{n} \le \frac{e^{1/n}n^{1/n}}{e}$$

Furthermore, $\lim_{{n}\to{\infty}}a^{1/n}=1$ and $\lim_{{n}\to{\infty}}n^{1/n}=1$, so by the squeeze theorem,
$$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}=\frac{1}{e}$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K