MHB Linear Programming using the simplex method

arl2267
Messages
15
Reaction score
0
Southwestern Oil supplies two distributors in the Northwest from two outlets. S1 and S2. Distributor S1 needs at least 3000 barrels of oil, and D2 needs at least 5000 barrels. The two outlets can each furnish exactly 5000 barrels of oil. The cost per barrel to ship the oil are:S1: D1=$30, D2=$20
S2: D1=$25, D2=$22There is also a shipping tax per barrel:S1: D1=$2, D2=$6
S2: D1=$5, D2=$4Southwestern Oil is determined to spend no more than $40,000 on shipping tax.a) How should the oil be supplied to minimize cost?
b) Find and interpret the values of any nonzero slack or surplus variableOkay so my attempt at coming up with the constraints is this:

Minimum: W=
30x1+20x2>=3000
25x3+22x4>=5000
x1+x2=50,000I think what is throwing me off is the shipping tax. I understand that the forum rules are that we need to make an attempt, but I am having such a hard time with this, and would really appreciate some help.
 
Mathematics news on Phys.org
arl2267 said:
Southwestern Oil supplies two distributors in the Northwest from two outlets. S1 and S2. Distributor D1 needs at least 3000 barrels of oil, and D2 needs at least 5000 barrels. The two outlets can each furnish exactly 5000 barrels of oil. The cost per barrel to ship the oil are:S1: D1=$30, D2=$20
S2: D1=$25, D2=$22There is also a shipping tax per barrel:S1: D1=$2, D2=$6
S2: D1=$5, D2=$4Southwestern Oil is determined to spend no more than $40,000 on shipping tax.a) How should the oil be supplied to minimize cost?
b) Find and interpret the values of any nonzero slack or surplus variableOkay so my attempt at coming up with the constraints is this:

Minimum: W=
30x1+20x2>=3000
25x3+22x4>=5000
x1+x2=50,000I think what is throwing me off is the shipping tax. I understand that the forum rules are that we need to make an attempt, but I am having such a hard time with this, and would really appreciate some help.

Hi arl2267, :)

Welcome to Math Help Boards! :)

First define your variables as,

\(x_{ij}\) - The number for barrels supplied from \(S_{i}\) to distributor \(D_{j}\) where \(i,j=1,2\)

So the total cost will be, \(z=(30+2)x_{11}+(20+6)x_{12}+(25+5)x_{21}+(22+4)x_{22}\). Hence the objective function is,

\[\mbox{Min }z=32x_{11}+26x_{12}+30x_{21}+26x_{22}\]

Since \(D1\) needs at least \(3000\) barrels of oil we have,

\[x_{11}+x_{21}\geq 3000\]

Can you try to obtain the rest of the constraints? :)

Kind Regards,
Sudharaka.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top