Hi(adsbygoogle = window.adsbygoogle || []).push({});

I have some data samples and and my job is to find a curve that will fit these values.

The curve that i have gone for is in the form

y = k * sqrt(d1^x*d2^y)*d3^z

where kxyz are all unknowns that I need to find. I solve this with the matlab function fminsearch and the solution is just fine.

I did also try linearize the problem by log

log(y) = log(k) + xlog(d1)/2 + ylog(d2)/2 +zlog(n)

And this i solved with the function lsqnonlin

I should mention that i use the least square solution sum(Ymeasured-Yanalytical)

Anyways this brings me to my question. These two dont give the same solution!

According to wikipedia

"

In LLSQ the solution is unique, but in NLLSQ there may be multiple minima in the sum of squares.

"

Which means that either I'm doing something wrong or the solution after linearizing isn't necessarily the optimal solution.

So

Is the solution of a linear function the optimal solution or not?

The solution of a non-linear is not unique while it is for a linear function.

Shouldn't the linear function give the same or a better solution than the non linear?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Linearing a non-linear problem don't yeild the same solution.

**Physics Forums | Science Articles, Homework Help, Discussion**