Undergrad Understanding Linearity of Differential Equations

Click For Summary
SUMMARY

The discussion clarifies the definition of linear differential equations (DEs) and the role of differential operators. A DE is linear if it can be expressed as ##\hat L f = g##, where ##\hat L## is a linear operator and ##g## is a fixed function independent of ##f##. The examples provided include the inhomogeneous linear DE ##x y''(x) = 1## and the homogeneous linear DE ##x' + (t^2)x = 0##. Non-linear DEs, such as ##y'(x) + y(x)^2 = 0##, fail to meet the linearity condition because the operator depends on the dependent variable itself.

PREREQUISITES
  • Understanding of differential equations and their classifications
  • Familiarity with linear operators in mathematics
  • Knowledge of homogeneous and inhomogeneous equations
  • Basic calculus, particularly differentiation
NEXT STEPS
  • Study the properties of linear operators in differential equations
  • Explore examples of homogeneous and inhomogeneous linear differential equations
  • Learn about non-linear differential equations and their characteristics
  • Investigate the application of differential operators in solving DEs
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are learning about differential equations, particularly those interested in understanding linearity and solving DEs effectively.

APUGYael
Messages
41
Reaction score
1
Hey all,

I don't understand what makes a differential equation (DE) linear.
I found this: "x y' = 1 is non-linear because y' is not multiplied by a constant"
but then also this: "x' + (t^2)x = 0 is linear in x".

t^2 also isn't a constant.
So why is this equation linear?
 
Last edited:
Physics news on Phys.org
A differential operator ##\hat L## is linear if ##\hat L (a f_1 + b f_2) = a\hat L f_1 + b \hat L f_2##, where a and b are constants and the fs functions.

A differential equation for a function ##f## is linear if it can be written as ##\hat L f = g##, where g is some fixed function that does not depend on f. If g=0 the differential equation is homogeneous.

x y’’(x) = 1 is an inhomogeneous linear differential equation. Your second example is a homogeneous linear differential equation.
 
Orodruin said:
A differential operator ##\hat L## is linear if ##\hat L (a f_1 + b f_2) = a\hat L f_1 + b \hat L f_2##, where a and b are constants and the fs functions.

A differential equation for a function ##f## is linear if it can be written as ##\hat L f = g##, where g is some fixed function that does not depend on f. If g=0 the differential equation is homogeneous.

x y’’(x) = 1 is an inhomogeneous linear differential equation. Your second example is a homogeneous linear differential equation.

I don't understand, still. What makes y(t) different from t2. They're both non-constants.
If you define y(t)=t^2 then you would be able to do y(t) (a+b) = ay(t)+by(t) = at^2 +bt^2, right?
 
Last edited:
You do not "define" ##y(t)##, you need to solve the differential equation to find out what ##y(t)## is. It has nothing to do with whether or not the coefficient in front of ##y## is constant in the independent variable or not. The only thing that matters is the property I described above, i.e., whether or not the differential equation can be written ##\hat L y = g## for some linear differential operator ##\hat L## or not. To take your first example, your differential operator would be ##\hat L = x (d/dx)## and ##g = 1##, leading to
$$
\hat L y(x) = x\frac{dy}{dx} = x y'(x) = 1.
$$
The operator ##\hat L## is linear because
$$
\hat L [a_1 y_1(x) + a_2 y_2(x)] = x \frac{d}{dx}[a_1 y_1(x) + a_2 y_2(x)] = a_1 x \frac{dy_1}{dx} + a_2 x \frac{dy_2}{dx} = a_1 \hat L y_1 + a_2 \hat L y_2.
$$

Edit: Effectively, the DE is linear if it is a sum of terms where each term contains only one factor of ##y(x)## or its derivatives. It does not matter whether the coefficients are constant in the independent variable or not.

Edit 2: So the general linear ODE of order ##n## is of the form
$$
\sum_{k = 0}^n f_k(x) \frac{d^ky}{dx^k} = g(x).
$$
The ODE is homogeneous if ##g(x) = 0## and otherwise inhomogeneous.
 
  • Like
Likes AVBs2Systems
Orodruin said:
You do not "define" ##y(t)##, you need to solve the differential equation to find out what ##y(t)## is. It has nothing to do with whether or not the coefficient in front of ##y## is constant in the independent variable or not. The only thing that matters is the property I described above, i.e., whether or not the differential equation can be written ##\hat L y = g## for some linear differential operator ##\hat L## or not. To take your first example, your differential operator would be ##\hat L = x (d/dx)## and ##g = 1##, leading to
$$
\hat L y(x) = x\frac{dy}{dx} = x y'(x) = 1.
$$
The operator ##\hat L## is linear because
$$
\hat L [a_1 y_1(x) + a_2 y_2(x)] = x \frac{d}{dx}[a_1 y_1(x) + a_2 y_2(x)] = a_1 x \frac{dy_1}{dx} + a_2 x \frac{dy_2}{dx} = a_1 \hat L y_1 + a_2 \hat L y_2.
$$

Edit: Effectively, the DE is linear if it is a sum of terms where each term contains only one factor of ##y(x)## or its derivatives. It does not matter whether the coefficients are constant in the independent variable or not.

Edit 2: So the general linear ODE of order ##n## is of the form
$$
\sum_{k = 0}^n f_k(x) \frac{d^ky}{dx^k} = g(x).
$$
The ODE is homogeneous if ##g(x) = 0## and otherwise inhomogeneous.

Can you show me an example of a non-linear equation and can you show me (using the operator) why it isn't linear, please?
 
Last edited:
An example of a non-linear differential equation would be
$$
y'(x) + y(x)^2 = 0.
$$
It is non-linear because
$$
[y_1(x)+y_2(x)]' + [y_1(x)+y_2(x)]^2 \neq [y_1'(x) + y_1(x)^2] + [y_2'(x) + y_2(x)^2].
$$
 
Orodruin said:
An example of a non-linear differential equation would be
$$
y'(x) + y(x)^2 = 0.
$$
It is non-linear because
$$
[y_1(x)+y_2(x)]' + [y_1(x)+y_2(x)]^2 \neq [y_1'(x) + y_1(x)^2] + [y_2'(x) + y_2(x)^2].
$$
Why am I so confused...?
 
Last edited:
Your differential operator cannot depend on the dependent function itself. Furthermore, you cannot write
$$
y'(x) + y(x)^2 = y(x) [d/dx + y(x)],
$$
the derivative needs to act on ##y(x)##. You could write it as
$$
[d/dx + y(x)]y(x),
$$
but it is still not linear because the first parenthesis depends on ##y(x)##.
 
Orodruin said:
Your differential operator cannot depend on the dependent function itself. Furthermore, you cannot write
$$
y'(x) + y(x)^2 = y(x) [d/dx + y(x)],
$$
the derivative needs to act on ##y(x)##. You could write it as
$$
[d/dx + y(x)]y(x),
$$
but it is still not linear because the first parenthesis depends on ##y(x)##.

I am sorry. I don't understand any of this.Hello,

First of all my apologies. Turns out I never had the subject of operators yet. After watching a video with an explanation I think it is now totally clear on what a linear operator is defined as and how to apply an operator to a function.

I see now what you were saying in the beginning. I might've been doing alternative math all this time, which is never a good idea because it's fictional.

Thanks for the help ;-)

-Yael
 
Last edited by a moderator:

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K