POTW Local Integrability of a Maximal Function

Click For Summary
If a measurable function f is supported on a ball B and the product f · log(2 + |f|) is integrable over B, then the Hardy-Littlewood maximal function Mf is also integrable over the same ball. This result highlights a relationship between the integrability of a function and its maximal function. The proof relies on properties of the Lebesgue measure and the behavior of the maximal function. The discussion emphasizes the significance of these integrability conditions in analysis. Overall, the integrability of f · log(2 + |f|) ensures the integrability of Mf in the specified domain.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##f## be a measurable function supported on some ball ##B = B(x,\rho)\subset \mathbb{R}^n##. Show that if ##f \cdot \log(2 + |f|) ## is integrable over ##B##, then the same is true for the Hardy-Littlewood maximal function ##Mf : y \mapsto \sup_{0 < r < \infty}|B(y,r)|^{-1} \int_{B(y,r)} |f(z)|\, dz##.
 
Last edited:
Physics news on Phys.org
Note $$\int_B Mf\, dx = \int_{B\cap (Mf < 1)} Mf\, dx + \int_{B\cap (Mf \ge 1)} Mf\, dx \le |B| + \int_0^\infty |B\cap (Mf \ge \max\{1,\lambda\})|\, d\lambda$$ by layer-cake representation. By the weak type (1,1)-estimate of the maximal function, the last integral is controlled by $$|(Mf \ge 1)| + \int_1^\infty \frac{C}{\lambda}\int_{|f| > \lambda/2} |f(x)|\, dx\, d\lambda$$ where ##C## is a constant. By Fubini's theorem the latter expression may be rewritten $$|(Mf \ge 1)| + C\int_{\mathbf{R}^n}\int_1^{2|f|}\, |f|\, \frac{d\lambda}{\lambda}\, dx = |(Mf \ge 1)| + C\int_B |f|\log(2|f|)\, dx$$which, in turn, is dominated by $$|(Mf \ge 1)| + 2C\int_B |f|\log(2 + |f|)\, dx < \infty$$Hence, ##Mf\in L^1(B)##.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
717
Replies
1
Views
2K