sbhatnagar said:
Challenge Problem: A variable line $L$ passing through the point $B(2,5)$ intersects the lines $2x^2-5xy+2y^2=0$ at $P$ and $Q$. Find the locus of the point $R$ on $L$ such that distances $BP$, $BR$ and $BQ$ are in harmonic progression.
Hi sbhatnagar, :)
Let \(P\equiv (x_{p},2x_{p})\), \(Q\equiv (x_{q},\frac{x_{q}}{2})\) and \(R\equiv (x_{r},y_{r})\). Since $BP$, $BR$ and $BQ$ are in harmonic progression we can write,
\[\frac{1}{BR}-\frac{1}{BP}=\frac{1}{BQ}-\frac{1}{BR}\]
\[\frac{1}{\sqrt{(x_{r}-5)^2+(x_r-2)^2}}-\frac{1}{\sqrt{(2x_{p}-5)^2+(x_p-2)^2}}=\frac{1}{\sqrt{(\frac{x_{q}}{2}-5)^2+(x_q-2)^2}}-\frac{1}{\sqrt{(x_{r}-5)^2+(x_r-2)^2}}\]
Since, \(\displaystyle\frac{2x_p -5}{x_p -2}=\frac{\frac{1}{2}x_q -5}{x_q-2}\Rightarrow x_{q}=-\frac{2x_p}{3x_p-8}\) we get,
\[\frac{2}{\sqrt{(x_{r}-5)^2+(x_r-2)^2}}-\frac{1}{\sqrt{(2x_{p}-5)^2+(x_p-2)^2}}=\frac{1}{\sqrt{\left(-\frac{x_p}{3x_p -8}-5\right)^2+\left(-\frac{2x_p}{3x_p -8}-2\right)^2}}\]
\[\Rightarrow \frac{2}{\sqrt{(x_{r}-5)^2+(x_r-2)^2}}=\frac{|3x_p-8|+8}{8\sqrt{(2x_{p}-5)^2+(x_p-2)^2}}~~~~~~(1)\]
Considering the line \(L\) we can write,
\[\frac{2x_p -5}{x_p -2}=\frac{y_r -5}{x_r -2}~~~~~~~~(2)\]
By (1) and (2) we get,
\[\frac{2}{x_r -2}=\frac{|3x_p-8|+8}{8(x_p -2)}=\frac{\pm(3x_p-8)+8}{8(x_p -2)}\]
It is clear from, \(\displaystyle\frac{1}{BR}-\frac{1}{BP}=\frac{1}{BQ}-\frac{1}{BR}\) that if \(x_p=0\) then, \(x_r=0\). This happens only when we take the negative sign in the above equation. That is,
\[\frac{2}{x_r -2}=\frac{-3x_p+16}{8(x_p -2)}\]
\[\Rightarrow x_p=\frac{16x_r}{3x_r+10}\]
Substituting for \(x_p\) in (2) we get,
\[y_r=\frac{17x_r}{10}\mbox{ for }x_{r}\neq 2\]
When \(x_p=x_q=x_r=2\), \(P\equiv (2,4),\,Q\equiv (2,1)\mbox{ and }R\equiv (2,y_r)\). Then, \(BP=1,\,BQ=4\mbox{ and }BR=5-y_r \).
\[\frac{1}{BR}-\frac{1}{BP}=\frac{1}{BQ}-\frac{1}{BR}\]
\[\Rightarrow \frac{1}{5-y_r}-1=\frac{1}{4}-\frac{1}{5-y_r}\]
\[\Rightarrow \frac{1}{5-y_r}=\frac{5}{8}\]
\[\therefore y_r=5-\frac{8}{5}=\frac{17}{5}\]
Therefore,
\[y_r=\begin{cases}\frac{17x_r}{10}&\mbox{ when }&x_{r}\neq 2\\\\\frac{17}{5}&\mbox{ when }&x_r=2\end{cases}\]
\[\Rightarrow y_r=\frac{17x_r}{10}\]
Kind Regards,
Sudharaka.