Magnetic force in a moving coordinate system

brianeyes88677
Messages
14
Reaction score
0
Consider a line charge with charge density λ and a electric charge q. A coordinate system moving at velocity v ,it will see the line charge as a current ,and the electric charge(which is also moving seen from the moving coordinate system) will feels magnetic force. Why does this happens?
 
Physics news on Phys.org
[strike]In a moving reference frame the line charge and the point charge are not moving relative to each other, so the charge will not "feel" any magnetic field.[/strike]
Disregard that, it's not correct.
 
Last edited by a moderator:
Tajimura said:
In a moving reference frame the line charge and the point charge are not moving relative to each other, so the charge will not "feel" any magnetic field.

This is irrelevant, the charge is moving and there is a magnetic field, so the charge will be subjected to a magnetic force. What needs to be realized is that magnetic and electric fields, and therefore forces, transform into each other under Lorentz transformations.
 
Orodruin said:
This is irrelevant, the charge is moving and there is a magnetic field, so the charge will be subjected to a magnetic force. What needs to be realized is that magnetic and electric fields, and therefore forces, transform into each other under Lorentz transformations.
Yup, you are right. It just rained down on me after I send the answer and left the forum, that relative speed of charges bears no importance here. Magnetic force is just a relativistic effect of changing a reference frame, and though moving observer is observing additional magnetic force, electric force observed by him is less than the electric force observed by stationary observer, so full force is just the same in both cases.
 
Can anyone do it mathematically?
 
brianeyes88677 said:
Can anyone do it mathematically?
Just insert linear change field into Lorentz transformations with burst v and see how the field get transformed into linear combination of electric and magnetic fields.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top