Undergrad Martingale, Optional sampling theorem

Click For Summary
SUMMARY

This discussion focuses on the properties of martingales and the optional sampling theorem in the context of a nonsymmetric random walk defined by independent random variables with probabilities ##\mathbb{P}\{X_j = 1\} = q## and ##\mathbb{P}\{X_j = -1\} = 1 - q##, where ##1/2 < q < 1##. It concludes that ##S_n## is a submartingale, and for ##M_n = S_n - rn## to be a martingale, ##r## must equal ##0## or ##2q - 1##. The probability of reaching state ##b## before state ##-a## is determined to be ##\mathbb{P}\{S_{T_{a,b}} = b\} = \frac{a}{a+b}## when ##q = 1/2##, while for ##1/2 < q < 1##, it is ##(q)^b##. The discussion also highlights the dependency of the probability on the values of ##a## and ##b##.

PREREQUISITES
  • Understanding of martingales and submartingales in probability theory.
  • Familiarity with the optional sampling theorem.
  • Knowledge of random walks and their properties.
  • Basic concepts of expected value and conditional expectation.
NEXT STEPS
  • Study the properties of martingales in more depth, focusing on examples and applications.
  • Learn about the optional sampling theorem and its implications in various probability scenarios.
  • Explore advanced topics in random walks, including symmetric vs nonsymmetric cases.
  • Investigate the implications of different values of ##q## on the behavior of random walks.
USEFUL FOR

Mathematicians, statisticians, and students of probability theory who are interested in the analysis of random walks and martingale properties.

WMDhamnekar
MHB
Messages
378
Reaction score
30
In this exercise, we consider simple, nonsymmetric random walk. Suppose 1/2 < q < 1 and ##X_1, X_2, \dots## are independent random variables with ##\mathbb{P}\{X_j = 1\} = 1 − \mathbb{P}\{X_j = −1\} = q.## Let ##S_0 = 0## and ##S_n = X_1 +\dots +X_n.## Let ##F_n## denote the information contained in ##X_1, \dots , X_n##
1. Which of these is ##S_n##: martingale, submartingale, supermartingale (more than one answer is possible)?

2. For which values of r is ##M_n = S_n − rn ## a martingale?

3. Let ##\theta = (1 − q)/q## and let ##M_n =\theta^{S_n}## . Show that ##M_n## is a martingale.

4. Let a, b be positive integers, and ##T_{a,b} = \min\{j : S_j = b \text{or} S_j = −a\}.## Use the optional sampling theorem to determine ##\mathbb{P}\{ S_{T_{a,b} }= b\}## .

5. Let ##T_a = T_{a,\infty}.## Find ##\mathbb{P}\{T_a < \infty\}##

My answers:

1. ##S_n## is a submartingale. This is because ##E[S_{n+1} | F_n] \geq qS_n + (1 − q)S_n = S_n##, and ##S_n## is increasing in n.

2. ##M_n## is a martingale if and only if r = 0. This is because ##E[M_{n+1} | F_n] = E[S_{n+1} − r(n+1)| F_n] =(S_n - rn) = q(S_n − rn) + (1 − q)(S_n − rn) = S_n − rn##, so ##r = 0## is required for ##M_n## to be a martingale.

3. We have ##E[\theta^{S_{n+1}} | F_n] = \theta^{qS_n + (1 − q)S_n} = \theta^{S_n} = M_n##, so ##M_n## is a martingale.

4. Using the optional sampling theorem and the fact that ##S_j## is likely to increase by 1 in each step with ##\mathbb{P}[\frac12 < q < 1]##, we have ##\mathbb{P}\{ S_{T_{a,b}} = b\} = q^a##.

5. Since ##S_n## is a submartingale, ##T_a < \infty## is unsure. ##T_a## is the stopping time where ##n## is the first time ##S_n## reaches −a, so ##\mathbb{P}\{T_a < \infty\} = 0 \leq p <q## where (p +q)=1
 
Last edited:
Physics news on Phys.org
If ##M_n## is a Martingale when ##r=0##, wouldn't that make ##S_n## a martingale for #1?
 
  • Like
Likes WMDhamnekar
Office_Shredder said:
If ##M_n## is a Martingale when ##r=0##, wouldn't that make ##S_n## a martingale for #1?
In this case, ##M_n = S_n - rn## is a martingale if ##r = \mathbb{E}[X_1]##. Since ##\mathbb{P}\{X_1 = 1\} = q## and ##\mathbb{P}\{X_1 = -1\} = 1-q##, we have ##\mathbb{E}[X_1] = 2q-1##. Therefore, ##M_n## is a martingale if ##r=2q-1##.
Credit goes to microsoft new bing Chat generative pre-training transformer.
 
My answer to 4 is wrong. Correct answer is ##(q)^b## where 1/2 < q < 1 as given in the question.
But if p = q = 1/2, then the answer is
This is a problem in probability theory involving a random walk. The optional stopping theorem can be used to determine the probability that the random walk reaches b before reaching ##-a##. Let ##p = \mathbb{P}\{S_{T_{a,b}} = b\}## and note that ##\mathbb{E}[S_{T_{a,b}}] = pb + (1-p)(-a)##. By the optional stopping theorem applied to the martingale ##S_n##, we have ##\mathbb{E}[S_{T_{a,b}}] = \mathbb{E}[S_0] = 0##. Solving for p gives us ##p = \frac{a}{a+b}##.

So, the probability that the random walk reaches b before reaching -a is ##\frac{a}{a+b}##.
 
Last edited:
I find it hard to believe that if ##q=0.5## you get ##a/(a+b)## and if ##q=0.500001## you get ##(.500001)^b##, which are very different numbers for lots of choices of ##a## and ##b## (e.g. ##a=b=10##)

Shouldn't the answer to 4 depend on both a and b at least?
 
Office_Shredder said:
I find it hard to believe that if ##q=0.5## you get ##a/(a+b)## and if ##q=0.500001## you get ##(.500001)^b##, which are very different numbers for lots of choices of ##a## and ##b## (e.g. ##a=b=10##)

Shouldn't the answer to 4 depend on both a and b at least?
Can you prove answer to 4 depends upon a and b ?🤔🤔
 
WMDhamnekar said:
Can you prove answer to 4 depends upon a and b ?🤔🤔

I just feel like, "does it hit a or b first" obviously depends on a? If a=1 and b=100 the odds you hit a first are decent, if a=1,000,000 and b=100 the odds you hit a first are infinitesimal.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 27 ·
Replies
27
Views
4K