MHB Mason's question via Facebook about solving a system of equations (2)

Click For Summary
The system of equations provided is solved by eliminating the variable z from the second and third equations, leading to a simplified system. After manipulating the equations, it is determined that x equals 1. Substituting x back into the equations allows for the calculation of y, which is found to be -2. Finally, z is calculated as 3, resulting in the solution (x, y, z) = (1, -2, 3). The consistency of the equations is confirmed as they all yield the same values for z.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following system for $\displaystyle \begin{align*} x, y, z \end{align*}$:

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ z &= 4 + 5\,x + 3\,y \\ z &= 5 - 12\,x - 5\,y \end{align*}$

As all the z coefficients are the same, it's a good idea to eliminate the z values in the second and third equations, so apply R2 - R1 to R2 and R3 - R1 to R3...

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -8 + 6\,x - y \\ 0 &= -7 - 11\,x - 9\,y \end{align*}$

Now we can multiply the second equation by 9 in order to eliminate the y terms...

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -72 + 54\,x - 9\,y \\ 0 &= -7 - 11\,x - 9\,y \end{align*}$

Now apply R3 - R2 to R3

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -72 + 54\,x - 9\,y \\ 0 &= 65 - 65\,x \end{align*}$

Thus $\displaystyle \begin{align*} 65\,x = 65 \implies x = 1 \end{align*}$, giving

$\displaystyle \begin{align*} 54 \, \left( 1 \right) - 9\,y &= 72 \\ -9\,y &= 18 \\ y &= -2 \end{align*}$

and

$\displaystyle \begin{align*} z &= 12 - 1 + 4\,\left( -2 \right) \\ z &= 3 \end{align*}$

Thus the solution is $\displaystyle \begin{align*} \left( x , y, z \right) = \left( 1, -2, 3 \right) \end{align*}$.
 
Mathematics news on Phys.org
Equivalently, since z is equal to each of 12−x+4y, −8+6x−y, and −7−11x−9y, they are all equal to each other:
12- x+ 4y= -8+ 6x- y and
-8+ 6x- y= -7- 11x- 9y.

From there, do the same as Prove It.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K