MHB Mason's question via Facebook about solving a system of equations (2)

AI Thread Summary
The system of equations provided is solved by eliminating the variable z from the second and third equations, leading to a simplified system. After manipulating the equations, it is determined that x equals 1. Substituting x back into the equations allows for the calculation of y, which is found to be -2. Finally, z is calculated as 3, resulting in the solution (x, y, z) = (1, -2, 3). The consistency of the equations is confirmed as they all yield the same values for z.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following system for $\displaystyle \begin{align*} x, y, z \end{align*}$:

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ z &= 4 + 5\,x + 3\,y \\ z &= 5 - 12\,x - 5\,y \end{align*}$

As all the z coefficients are the same, it's a good idea to eliminate the z values in the second and third equations, so apply R2 - R1 to R2 and R3 - R1 to R3...

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -8 + 6\,x - y \\ 0 &= -7 - 11\,x - 9\,y \end{align*}$

Now we can multiply the second equation by 9 in order to eliminate the y terms...

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -72 + 54\,x - 9\,y \\ 0 &= -7 - 11\,x - 9\,y \end{align*}$

Now apply R3 - R2 to R3

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -72 + 54\,x - 9\,y \\ 0 &= 65 - 65\,x \end{align*}$

Thus $\displaystyle \begin{align*} 65\,x = 65 \implies x = 1 \end{align*}$, giving

$\displaystyle \begin{align*} 54 \, \left( 1 \right) - 9\,y &= 72 \\ -9\,y &= 18 \\ y &= -2 \end{align*}$

and

$\displaystyle \begin{align*} z &= 12 - 1 + 4\,\left( -2 \right) \\ z &= 3 \end{align*}$

Thus the solution is $\displaystyle \begin{align*} \left( x , y, z \right) = \left( 1, -2, 3 \right) \end{align*}$.
 
Mathematics news on Phys.org
Equivalently, since z is equal to each of 12−x+4y, −8+6x−y, and −7−11x−9y, they are all equal to each other:
12- x+ 4y= -8+ 6x- y and
-8+ 6x- y= -7- 11x- 9y.

From there, do the same as Prove It.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
11K
Replies
4
Views
11K
Replies
4
Views
11K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
1
Views
11K
Replies
2
Views
10K
Back
Top