MHB Mason's question via Facebook about solving a system of equations (2)

Click For Summary
The system of equations provided is solved by eliminating the variable z from the second and third equations, leading to a simplified system. After manipulating the equations, it is determined that x equals 1. Substituting x back into the equations allows for the calculation of y, which is found to be -2. Finally, z is calculated as 3, resulting in the solution (x, y, z) = (1, -2, 3). The consistency of the equations is confirmed as they all yield the same values for z.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following system for $\displaystyle \begin{align*} x, y, z \end{align*}$:

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ z &= 4 + 5\,x + 3\,y \\ z &= 5 - 12\,x - 5\,y \end{align*}$

As all the z coefficients are the same, it's a good idea to eliminate the z values in the second and third equations, so apply R2 - R1 to R2 and R3 - R1 to R3...

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -8 + 6\,x - y \\ 0 &= -7 - 11\,x - 9\,y \end{align*}$

Now we can multiply the second equation by 9 in order to eliminate the y terms...

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -72 + 54\,x - 9\,y \\ 0 &= -7 - 11\,x - 9\,y \end{align*}$

Now apply R3 - R2 to R3

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -72 + 54\,x - 9\,y \\ 0 &= 65 - 65\,x \end{align*}$

Thus $\displaystyle \begin{align*} 65\,x = 65 \implies x = 1 \end{align*}$, giving

$\displaystyle \begin{align*} 54 \, \left( 1 \right) - 9\,y &= 72 \\ -9\,y &= 18 \\ y &= -2 \end{align*}$

and

$\displaystyle \begin{align*} z &= 12 - 1 + 4\,\left( -2 \right) \\ z &= 3 \end{align*}$

Thus the solution is $\displaystyle \begin{align*} \left( x , y, z \right) = \left( 1, -2, 3 \right) \end{align*}$.
 
Mathematics news on Phys.org
Equivalently, since z is equal to each of 12−x+4y, −8+6x−y, and −7−11x−9y, they are all equal to each other:
12- x+ 4y= -8+ 6x- y and
-8+ 6x- y= -7- 11x- 9y.

From there, do the same as Prove It.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
11K
Replies
4
Views
11K
Replies
4
Views
11K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
1
Views
11K
Replies
2
Views
10K