MHB Mason's question via Facebook about solving a system of equations (2)

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following system for $\displaystyle \begin{align*} x, y, z \end{align*}$:

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ z &= 4 + 5\,x + 3\,y \\ z &= 5 - 12\,x - 5\,y \end{align*}$

As all the z coefficients are the same, it's a good idea to eliminate the z values in the second and third equations, so apply R2 - R1 to R2 and R3 - R1 to R3...

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -8 + 6\,x - y \\ 0 &= -7 - 11\,x - 9\,y \end{align*}$

Now we can multiply the second equation by 9 in order to eliminate the y terms...

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -72 + 54\,x - 9\,y \\ 0 &= -7 - 11\,x - 9\,y \end{align*}$

Now apply R3 - R2 to R3

$\displaystyle \begin{align*} z &= 12 - x + 4\,y \\ 0 &= -72 + 54\,x - 9\,y \\ 0 &= 65 - 65\,x \end{align*}$

Thus $\displaystyle \begin{align*} 65\,x = 65 \implies x = 1 \end{align*}$, giving

$\displaystyle \begin{align*} 54 \, \left( 1 \right) - 9\,y &= 72 \\ -9\,y &= 18 \\ y &= -2 \end{align*}$

and

$\displaystyle \begin{align*} z &= 12 - 1 + 4\,\left( -2 \right) \\ z &= 3 \end{align*}$

Thus the solution is $\displaystyle \begin{align*} \left( x , y, z \right) = \left( 1, -2, 3 \right) \end{align*}$.
 
Mathematics news on Phys.org
Equivalently, since z is equal to each of 12−x+4y, −8+6x−y, and −7−11x−9y, they are all equal to each other:
12- x+ 4y= -8+ 6x- y and
-8+ 6x- y= -7- 11x- 9y.

From there, do the same as Prove It.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
11K
Replies
4
Views
11K
Replies
4
Views
11K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
1
Views
11K
Replies
2
Views
10K
Back
Top