I Mass spectrum of open bosonic strings

snypehype46
Messages
10
Reaction score
1
TL;DR Summary
This question regards some features about the excitation of an bosonic string
I'm learning string theory from the book by Zwiebach and others. I'm trying to understand the quantisation of the open string and its mass spectrum.

In light-cone gauge the mass-shell condition of an open string is given by:

$$M^2 = 2(N - 1)/l_s^2$$

where ##N = \sum_{i=1}^{D-2}\sum_{n=1}^\infty \alpha^i_{-n}\alpha^i_n## and ##l_s## is the string length scale.

Now to determine the mass spectrum of the string, we can look at the values of $N$:

- For ##N=0##, there is a tachyon since ##M^2## is negative
- For ##N=1##, there is a *vector boson* ##\alpha^i_-1 |0;k\rangle##.
- For ##N=2##, we have that ##M^2## is positive and the states are given by: ##\alpha^i_{-2}|0;k\rangle## and ##\alpha^i_{-1}\alpha^j_{-1}|0;k\rangle##

Now this is what I don't understand:

- Why is the state with ##N=1## a *vector*, why is not a scalar? How does one determine if a state is a vector or scalar?

- In the material I've read, it is claimed that Lorentz invariance requires that the the state with ##N=1## is massless, but I don't understand why is this case.

- Finally, the number of states with ##N=2## is claimed to 324 because it is the number of independent components of a matrix representation of ##SO(25)##, why is this? Also this state is said to have a single massive state with spin-2, why is this?
 
Physics news on Phys.org
Your first question: for N=1 you have (D-2) components labeled by i, which transform into each other if you apply a Lorentz transfo. That's some pretty weird scalar, but it makes sense for a massless vector irrep.
 
  • Like
Likes snypehype46
Your 2nd: what do you get if you apply the momentum operator on the state and use the on-shell condition to calculate the mass (squared)? It should be zero, which is probably explained in Zwiebach.
 
  • Like
Likes snypehype46
3d: this is basic representation theory for SO(N). A rep. for this group can always be written as the sum of an antisymmetric part (#=1/2×N(N-1)), a traceless symmetric part (#=1/2×N(N+1)-1) and a trace (#=1). See e.g. Zee's book on group theory.
 
  • Like
Likes snypehype46
https://arxiv.org/pdf/2503.09804 From the abstract: ... Our derivation uses both EE and the Newtonian approximation of EE in Part I, to describe semi-classically in Part II the advection of DM, created at the level of the universe, into galaxies and clusters thereof. This advection happens proportional with their own classically generated gravitational field g, due to self-interaction of the gravitational field. It is based on the universal formula ρD =λgg′2 for the densityρ D of DM...
Many of us have heard of "twistors", arguably Roger Penrose's biggest contribution to theoretical physics. Twistor space is a space which maps nonlocally onto physical space-time; in particular, lightlike structures in space-time, like null lines and light cones, become much more "local" in twistor space. For various reasons, Penrose thought that twistor space was possibly a more fundamental arena for theoretical physics than space-time, and for many years he and a hardy band of mostly...
Back
Top