Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Mass-to-light-ratio and dark matter in galaxy

  1. Dec 12, 2007 #1
    Suppose one measures the total mass of a galaxy somehow and its total luminosity. What mass to light ratio (in solar units) is considered a signal for dark matter and why?

    For example if M(galaxy)/L(galaxy) = 10 M(sun)/L(sun), is that considered 'too high' and a signal of dark matter?

    My question is related to the fact that there are many stars that have higher mass-to-light ratio than the sun. Why would we expect the total galactic mass-to-light ratio be of the order of the sun's if there is no dark matter present?
  2. jcsd
  3. Dec 13, 2007 #2


    User Avatar
    Science Advisor
    Homework Helper

    The stars having M to L ratio greater than the sun are very very few, i.e not "many stars that have higher mass-to-light ratio than the sun". That is at least what I remember from my astrophysics class, do you have any sources on that statement of yours? I can try fining some for mine after the 17th Dec when my exams are over:)
    Last edited: Dec 13, 2007
  4. Dec 13, 2007 #3
    That's what some pages of wikipedia say:

    The above shows that red dwarf are the major star type in Milky way and have mass to light ratio of 4 for the biggest ones and possibly more for the others. Also, if they emit mostly in infrared, their mass to light ratio in any visible band would be even higher.

    I also imagine, the allowed M/L ratio without dark matter should depend on the morphology class and age of the galaxy under consideration. Galaxies at high redshifts are early in their development and must have more brighter stars so M/L should be lower for them.
    Last edited: Dec 13, 2007
  5. Dec 13, 2007 #4


    User Avatar
    Science Advisor
    Homework Helper

    Now I have checked in my astrophysics books: there is a good picture of mass-luminosity in Annu. Rev. Astron. Astrophys.,18,115,1980 by Popper.

    And one has of course ruled out the possibility that the dark matter is dark baryonic matter, i.e very very faint stars and also brown drawfs. But even with the highest theoretical account for that, there is still much matter missing. Also how gruop of galaxies are clustered points to dark non-baryonic matter.

    The mean mass of a star in the milky way is 0.7M_sun according to my books. And even tough there are many more low mass stars, their weight is much lower. Combine IMF + L/M and you can get an estimation on the M/L for the milky way.

    Using H I lines (21cm) are very useful, they can penetrate the most.

    L/L_sun = (M/M_sun)^alpha
    Where alpha is a paramter about 4-2.3. 4 is for masses belox 0.5M_sun. 2.3 is for higher mass stars.

    Just to let you know, there is not a relation between age and morpholgy class. At least my books tells that it is wrong, that Hubble was wrong on that.

    And you also use the virial theorem, to calculate the mass of an ensamble of objects, by measuring velocity dispersions. So in this way you calculate the mass of something.

    Gravity lenses + flattening velocity curves for galaxies should give firm indications for dark matter also :)
  6. Dec 14, 2007 #5
    I am not a fan of dark matter myself until it is detected. In this thread though I am more concerned with measuring M(stars)/L with a minimal set of assumptions.

    Has anyone used that mass-luminosity relation for stars to actually infer the M(stars)/L of MilkyWay or at least in the solar neighborhood? I suppose such a study is possible only for MilkyWay cause other galaxies are too far to have their stars resolved?
    Last edited: Dec 14, 2007
  7. Dec 14, 2007 #6


    User Avatar
    Science Advisor
    Homework Helper

    That depends on how you define resolved..

    Dark matter can also be very very faint stars etc.. But no theoretical models can explan their existens either, and we know very very much more about star formation, life and properties of stars and well baryonic matter. So either make a new theory about stars and gas and galaxies just using baryonic matter, or search for new super symmetric particles. (or both).

    The L to M ratio and the "missing" mass in galaxies and galaxy CLUSTERS is known scince very long time and there is a lot of research of this. If you are not a reasearching astrophysicis yourself, then I think you should first try to study more formal astrophysics and ask what real reseachers tell you. Myself is just an undergraduate in Sub-atomic physics, doing a lots of astrophyiscs cuorses as well.

    I think one has done it, in my astro-book "Instroduction to Modern Astrophysics" , by Caroll. in the chapter about milky way, there is a lot of derivations of using that L to M relation to get certain properties of the milky way.

    And to notknowing: Arxiv is preprint, not published and approved articles. Of course there are alternative theories, but the current "paradigm" is the thing we write most about in these forums.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Mass-to-light-ratio and dark matter in galaxy