MHB Massaad's question via email about Laplace Transforms

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle y\left( t \right)$ satisfies the initial value problem:

$\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}x^2} - 5\,\frac{\mathrm{d}y}{\mathrm{d}t} - 6\,y = -126\,H\left( t - 6 \right) , \quad y\left( 0 \right) = -5, \,\, y'\left( 0 \right) = 5$

Find the solution to the initial value problem using Laplace Transforms.

Taking the Laplace Transform of the equation gives

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) - 5\left[ s\,Y\left( s \right) - y\left( 0 \right) \right] - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) - s\left( -5 \right) - 5 - 5 \left[ s\,Y\left( s \right) - \left( -5 \right) \right] - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) + 5\,s - 5 - 5\,s\,Y\left( s \right) - 25 - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s^2 - 5\,s - 6 \right) Y\left( s \right) + 5\,s - 30 &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s - 6 \right) \left( s + 1 \right) Y\left( s \right) + 5 \left( s - 6 \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s + 1 \right) Y\left( s \right) + 5 &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) } \\
\left( s + 1 \right) Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) } - 5 \\
Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) \left( s + 1 \right) } - \frac{5}{s + 1}\end{align*}$

The second term is easy to find the inverse transform of: $\displaystyle \mathcal{L}^{-1}\,\left\{ \frac{5}{s + 1} \right\} = 5\,\mathrm{e}^{-t} $.

For the first term, due to the exponential function, it suggests a second shift: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \,H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

So in this case, we have $\displaystyle F\left( s \right) = -\frac{126}{s\left( s - 6 \right) \left( s + 1 \right) } $.

To find $\displaystyle f\left( t \right) $ we will need partial fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s - 6} + \frac{C}{s + 1} &\equiv \frac{-126}{s\left( s - 6 \right) \left( s + 1 \right) } \\
A \left( s - 6 \right) \left( s + 1 \right) + B\,s\left( s + 1 \right) + C\,s \left( s - 6 \right) &\equiv -126 \end{align*} $

Let $\displaystyle s = 0 \implies -6\,A = -126 \implies A = 21$

Let $\displaystyle s = 6 \implies 42\,B = -126 \implies B = -3$

Let $\displaystyle s = -1 \implies 7\,C = -126 \implies C = -18 $

So

$\displaystyle \begin{align*} F\left( s \right) &= 21 \left( \frac{1}{s} \right) - 3 \left( \frac{1}{s - 6} \right) - 18 \left( \frac{1}{s + 1} \right) \\
f\left( t \right) &= 21 - 3\,\mathrm{e}^{6\,t} - 18\,\mathrm{e}^{-t} \end{align*}$

Thus $\displaystyle \mathcal{L}^{-1}\,\left\{ -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) \left( s + 1 \right) } \right\} = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right]\,H\left( t - 6 \right) $ by the second shift theorem.

So now we can finally write the solution to the DE:

$\displaystyle y\left( t \right) = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right] \, H\left( t - 6 \right) - 5\,\mathrm{e}^{-t}$
 
Mathematics news on Phys.org


I hope this helps answer your question, Massaad. Let me know if you have any further questions or if anything is unclear. Keep up the good work with Laplace Transforms!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top