MHB Massaad's question via email about Laplace Transforms

AI Thread Summary
The discussion focuses on solving the initial value problem involving the second-order differential equation using Laplace Transforms. The transformed equation leads to a solution in the Laplace domain, which is then simplified using partial fraction decomposition. The inverse Laplace Transform is applied to find the time-domain solution, resulting in a piecewise function that incorporates a Heaviside step function. The final solution is expressed as a combination of exponential terms and the Heaviside function, indicating behavior changes at t = 6. The response concludes with encouragement for further questions regarding Laplace Transforms.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle y\left( t \right)$ satisfies the initial value problem:

$\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}x^2} - 5\,\frac{\mathrm{d}y}{\mathrm{d}t} - 6\,y = -126\,H\left( t - 6 \right) , \quad y\left( 0 \right) = -5, \,\, y'\left( 0 \right) = 5$

Find the solution to the initial value problem using Laplace Transforms.

Taking the Laplace Transform of the equation gives

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) - 5\left[ s\,Y\left( s \right) - y\left( 0 \right) \right] - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) - s\left( -5 \right) - 5 - 5 \left[ s\,Y\left( s \right) - \left( -5 \right) \right] - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) + 5\,s - 5 - 5\,s\,Y\left( s \right) - 25 - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s^2 - 5\,s - 6 \right) Y\left( s \right) + 5\,s - 30 &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s - 6 \right) \left( s + 1 \right) Y\left( s \right) + 5 \left( s - 6 \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s + 1 \right) Y\left( s \right) + 5 &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) } \\
\left( s + 1 \right) Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) } - 5 \\
Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) \left( s + 1 \right) } - \frac{5}{s + 1}\end{align*}$

The second term is easy to find the inverse transform of: $\displaystyle \mathcal{L}^{-1}\,\left\{ \frac{5}{s + 1} \right\} = 5\,\mathrm{e}^{-t} $.

For the first term, due to the exponential function, it suggests a second shift: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \,H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

So in this case, we have $\displaystyle F\left( s \right) = -\frac{126}{s\left( s - 6 \right) \left( s + 1 \right) } $.

To find $\displaystyle f\left( t \right) $ we will need partial fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s - 6} + \frac{C}{s + 1} &\equiv \frac{-126}{s\left( s - 6 \right) \left( s + 1 \right) } \\
A \left( s - 6 \right) \left( s + 1 \right) + B\,s\left( s + 1 \right) + C\,s \left( s - 6 \right) &\equiv -126 \end{align*} $

Let $\displaystyle s = 0 \implies -6\,A = -126 \implies A = 21$

Let $\displaystyle s = 6 \implies 42\,B = -126 \implies B = -3$

Let $\displaystyle s = -1 \implies 7\,C = -126 \implies C = -18 $

So

$\displaystyle \begin{align*} F\left( s \right) &= 21 \left( \frac{1}{s} \right) - 3 \left( \frac{1}{s - 6} \right) - 18 \left( \frac{1}{s + 1} \right) \\
f\left( t \right) &= 21 - 3\,\mathrm{e}^{6\,t} - 18\,\mathrm{e}^{-t} \end{align*}$

Thus $\displaystyle \mathcal{L}^{-1}\,\left\{ -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) \left( s + 1 \right) } \right\} = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right]\,H\left( t - 6 \right) $ by the second shift theorem.

So now we can finally write the solution to the DE:

$\displaystyle y\left( t \right) = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right] \, H\left( t - 6 \right) - 5\,\mathrm{e}^{-t}$
 
Mathematics news on Phys.org


I hope this helps answer your question, Massaad. Let me know if you have any further questions or if anything is unclear. Keep up the good work with Laplace Transforms!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top