MHB Math Game HELP: Solve Hard Task with Invariants

  • Thread starter Thread starter Mathick
  • Start date Start date
  • Tags Tags
    Game Hard
Click For Summary
The discussion revolves around a mathematical game involving a positive whole number that is transformed based on its parity. If the number is even, it is halved; if odd, one can choose between two transformations, \(3n-1\) or \(3n+1\). The connection to the unsolved Collatz conjecture is highlighted, with a specific variation allowing for the choice between the two transformations. A key insight is that selecting the transformation that results in a multiple of 4 leads to a sequence of steps that reduces the number, ultimately suggesting that reaching 1 is possible. The conversation emphasizes the importance of strategic choice in the transformations to ensure a decrease in value.
Mathick
Messages
23
Reaction score
0
HELP - math game

A positive whole number was written on the board. In each step we rub out the number $$n$$ (written on the board) and we write a new one. If number $$n$$ is even, then we write number $$\frac{n}{2}$$ on the board. If number $$n$$ is odd, then we choose one of the numbers: $$3n-1$$ or $$3n+1$$ and we write it down on the board. Decide, if after finite amount of steps, we can obtain the number 1 one the board (no matter which number was written on the board at the beginning).

Please help. I can't figure it out. I know that it can be connected to invariants.
 
Last edited:
Physics news on Phys.org
Deveno said:
This is the Collatz conjecture. It is currently unsolved.

Yes, I found it but there is one extra variation. You can choose either $$3n+1$$ or $$3n-1$$. Doesn't it have an influence on the result?
 
If at some stage of the game you have an odd number $n$ then one of the numbers $3n\pm1$ will be a multiple of $4$. Choose that one. Then the next two steps will take you to the number $\dfrac{3n\pm1}4$, which is strictly smaller than $n$. This process of making numbers strictly smaller will inevitably bring you down to $1$ eventually.
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K