Mathematical Induction question

Click For Summary
SUMMARY

This discussion focuses on proving a mathematical induction statement involving n + 1 sets A1, A2, ..., An, and B. The base case is established for n = 1, demonstrating that A1 ∩ B = A1 ∩ B. The induction step involves manipulating the left-hand side (LHS) of P(k+1) to show that the union of intersections holds true. The final conclusion is that the expression simplifies correctly, confirming the validity of the induction proof.

PREREQUISITES
  • Understanding of mathematical induction principles
  • Familiarity with set theory concepts, specifically unions and intersections
  • Proficiency in manipulating mathematical expressions and symbols
  • Knowledge of summation notation and its properties
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore set theory, focusing on union and intersection operations
  • Practice manipulating mathematical expressions involving summations
  • Review examples of induction proofs in mathematical literature
USEFUL FOR

Students and educators in mathematics, particularly those studying set theory and mathematical proofs, will benefit from this discussion.

William1
Messages
4
Reaction score
0
A question I'm working on and my math book doesn't clarify the answer well enough for me to follow. I'm having some issues at getting the math symbols to work correctly so bare with me!Prove by mathematical induction that if A1, A2, ..., An and B are any n + 1 sets, then:
View attachment 37
Base step = n = 1 so P(1): A1 ∩ B = A1 ∩ B
Induction Step: LHS of P(k+1):

Substitute (k+1) for all N. Working LHS: (where {k U i = 1}Ai is the union from 1 to n of Ak)
=(({k U i = 1}Ai​) U Ak+1) ∩ B; then distribute:
=(({k U i = 1}(Ai​ ∩ B) U ( Ak+1 ∩ B)

then this is where I get stuck. I feel there is about one or two more steps but I can't seem to grasp it. Any suggestions?
 

Attachments

  • question.png
    question.png
    1.3 KB · Views: 110
Physics news on Phys.org
William said:
Prove by mathematical induction that if A1, A2, ..., An and B are any n + 1 sets, then:
https://www.physicsforums.com/attachments/37
$\bigcup\limits_{k = 1}^{N + 1} {\left( {A_k \cap B} \right)} = \bigcup\limits_{k = 1}^N {\left( {A_k \cap B} \right)} \cup \left( {A_{N + 1} \cap B} \right)$
$ = \left[ {\left( {\bigcup\limits_{k = 1}^{N } { {A_k }} } \right) \cap B} \right] \cup \left( {A_{N+1 } \cap B} \right)$
$ = \left[ {\left( {\bigcup\limits_{k = 1}^{N } { {A_k } } } \right) \cup A_{N+1 } } \right] \cap B$.

Can you finish?
 
Last edited:
Wouldn't it just be:

= {k+1 U i = 1 Ai U Ak+1) ∩ B
= {k+1 U i = 1} (Ai ∩ B)
 
William said:
Wouldn't it just be:
= {k+1 U i = 1 Ai U Ak+1) ∩ B
= {k+1 U i = 1} (Ai ∩ B)
Do you see that $\left( {\bigcup\limits_{k = 1}^N {A_k } } \right) \cup A_{N + 1} = \bigcup\limits_{k = 1}^{N + 1} {A_k } ~?$

I started with $P(N)$ being true.
Then looked at the expansion of $P(N+1)$.
 
Yes, I sort of see how they are equal. It's still not crystal clear to me yet though.
 
William said:
Yes, I sort of see how they are equal. It's still not crystal clear to me yet though.
Can you see that $\sum\limits_{k = 1}^{n + 1} {a_k } = a_1 + a_2 + \cdots + a_{n + 1} = \left( {a_1 + a_2 + \cdots + a_n } \right) + a_{n + 1} ~?$

If so $\sum\limits_{k = 1}^{n + 1} {a_k } =\sum\limits_{k = 1}^{n} {a_k }+ a_{n + 1} $
 
Yes, I see that.
 
William said:
Yes, I see that.
Then what are you missing in understanding the induction proof?
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K