MHB Max $m$ for $(\frac{1}{11^m}\prod_{i=1000}^{2014}i)\in N$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Max
Albert1
Messages
1,221
Reaction score
0
$(\frac{1}{11^m}\prod_{i=1000}^{2014}i)\in N$
please find max($m$)
 
Mathematics news on Phys.org
Albert said:
$(\frac{1}{11^m}\prod_{i=1000}^{2014}i)\in N$
please find max($m$)

we need to find how many numbers between 1000 and 2014 are divisible by $11 ,11^2, 11^3$ so on

$\lfloor\dfrac{999}{11}\rfloor = 90$
$\lfloor\dfrac{2014}{11}\rfloor\ = 183$

$\lfloor\dfrac{999}{11^2}\lfloor\ = 8$
$\lfloor\dfrac{2014}{11^2}\rfloor\ = 16$

$\lfloor\dfrac{999}{11^3}\lfloor\ = 0$
$\lfloor\dfrac{2014}{11^3}\rfloor = 1$

so number of numbers divisible by 11 is 93 by $11^2$ is 8 and $11^3$ is 1

so highest poser is 93 + 8 +1 = 102
or m = 102
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top