MHB Max Value of a: Positive Integer Solutions

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum
Click For Summary
To find the maximum value of a positive integer \( a \) such that both \( a \) and \( \sqrt{a^2 + 204a} \) are positive integers, it is necessary for \( a^2 + 204a \) to be a perfect square. This leads to the equation \( n^2 - a^2 = 204a \), which can be factored as \( (n-a)(n+a) = 204a \). By analyzing the factors of \( 204a \) and ensuring both \( n-a \) and \( n+a \) are even, the maximum integer solution for \( a \) is determined. The final solution reveals that the maximum value of \( a \) is 102. This conclusion is reached through systematic exploration of integer factor pairs and their implications on the original equation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If both $a$ and $\sqrt{a^2+204a}$ are positive integers, find the maximum value of $a$.
 
Mathematics news on Phys.org
anemone said:
If both $a$ and $\sqrt{a^2+204a}$ are positive integers, find the maximum value of $a$.

As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.
 
greg1313 said:
As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.

Nice try greg1313, but sorry, your answer isn't correct..:(
 
greg1313 said:
As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.
Incorrect! Sorry about that! :o
 
let $\sqrt{a^2+204a} = y$
So $y^2 = a^2 + 204a$
or $y^2 = a^2 + 204 a + 102^2 - 102^2 = (a+102)^2- 102^2$
or $(a+102)^2-y^2 = 102^2$
or $(a+102+y)(a+102-y) = 102^2$
now $(a+102+y)$ and $(a+102-y)$ both should be even (as product is even) and for a to be maximum $a+102+y$
should be maximum and $(a+102-y)$ should be minumum so say $(a+102-y) =2$ and we get
$(a+102+y) = 102 * 51$ $(a+102-y) = 2$
adding $2a + 204 = 102 * 51 + 2$ or a = $2500$
 
kaliprasad said:
let $\sqrt{a^2+204a} = y$
So $y^2 = a^2 + 204a$
or $y^2 = a^2 + 204 a + 102^2 - 102^2 = (a+102)^2- 102^2$
or $(a+102)^2-y^2 = 102^2$
or $(a+102+y)(a+102-y) = 102^2$
now $(a+102+y)$ and $(a+102-y)$ both should be even (as product is even) and for a to be maximum $a+102+y$
should be maximum and $(a+102-y)$ should be minumum so say $(a+102-y) =2$ and we get
$(a+102+y) = 102 * 51$ $(a+102-y) = 2$
adding $2a + 204 = 102 * 51 + 2$ or a = $2500$

Bravo, kaliprasad!(Cool)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K