Max Value of a: Positive Integer Solutions

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum
Click For Summary
SUMMARY

The maximum value of the positive integer \( a \) such that both \( a \) and \( \sqrt{a^2 + 204a} \) are positive integers is determined through algebraic manipulation. The expression simplifies to \( \sqrt{(a + 102)^2} \), leading to the conclusion that \( a + 102 \) must also be a positive integer. Therefore, the maximum value of \( a \) is 102, as \( a \) must be a non-negative integer.

PREREQUISITES
  • Understanding of algebraic expressions and square roots
  • Knowledge of integer properties and constraints
  • Familiarity with solving equations involving positive integers
  • Basic mathematical manipulation skills
NEXT STEPS
  • Explore integer solutions in algebraic equations
  • Learn about properties of square roots in number theory
  • Study the implications of positive integer constraints in mathematical problems
  • Investigate advanced algebraic techniques for solving similar problems
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in problem-solving techniques involving integers and algebraic expressions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If both $a$ and $\sqrt{a^2+204a}$ are positive integers, find the maximum value of $a$.
 
Mathematics news on Phys.org
anemone said:
If both $a$ and $\sqrt{a^2+204a}$ are positive integers, find the maximum value of $a$.

As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.
 
greg1313 said:
As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.

Nice try greg1313, but sorry, your answer isn't correct..:(
 
greg1313 said:
As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.
Incorrect! Sorry about that! :o
 
let $\sqrt{a^2+204a} = y$
So $y^2 = a^2 + 204a$
or $y^2 = a^2 + 204 a + 102^2 - 102^2 = (a+102)^2- 102^2$
or $(a+102)^2-y^2 = 102^2$
or $(a+102+y)(a+102-y) = 102^2$
now $(a+102+y)$ and $(a+102-y)$ both should be even (as product is even) and for a to be maximum $a+102+y$
should be maximum and $(a+102-y)$ should be minumum so say $(a+102-y) =2$ and we get
$(a+102+y) = 102 * 51$ $(a+102-y) = 2$
adding $2a + 204 = 102 * 51 + 2$ or a = $2500$
 
kaliprasad said:
let $\sqrt{a^2+204a} = y$
So $y^2 = a^2 + 204a$
or $y^2 = a^2 + 204 a + 102^2 - 102^2 = (a+102)^2- 102^2$
or $(a+102)^2-y^2 = 102^2$
or $(a+102+y)(a+102-y) = 102^2$
now $(a+102+y)$ and $(a+102-y)$ both should be even (as product is even) and for a to be maximum $a+102+y$
should be maximum and $(a+102-y)$ should be minumum so say $(a+102-y) =2$ and we get
$(a+102+y) = 102 * 51$ $(a+102-y) = 2$
adding $2a + 204 = 102 * 51 + 2$ or a = $2500$

Bravo, kaliprasad!(Cool)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K